III. Основы электродинамики

Магнитное поле, что это? - особый вид материи;
Где существует? - вокруг движущихся электрических зарядов (в том числе вокруг проводника с током)
Как обнаружить? - с помощью магнитной стрелки (или железных опилок) или по его действию на проводник с током.


Опыт Эрстеда:

Магнитная стрелка поворачивается, если по проводнику начинает протекать эл. ток, т.к. вокруг проводника с током образуется магнитное поле.


Взаимодействие двух проводников с током:

Каждый проводник с током имеет вокруг себя собственное магнитное поле, которое с некоторой силой действует на соседний проводник.

В зависимости от направления токов проводники могут притягиваться или отталкиваться друг от друга.

Вспомни прошлый учебный год:


МАГНИТНЫЕ ЛИНИИ (или иначе линии магнитной индукции)

Как изобразить магнитное поле? - с помощью магнитных линий;
Магнитные линии, что это?

Это воображаемые линии, вдоль которых располагаются магнитные стрелки, помещенные в магнитное поле. Магнитные линии можно провести через любую точку магнитного поля, они имеют направление и всегда замкнуты.

Вспомни прошлый учебный год:


НЕОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика неоднородного магнитного поля: магнитные линии искривлены;густота магнитных линий различна;сила, с которой магнитное поле действует на магнитную стрелку, ична в разных точках этого поля по величине и направлению.

Где существует неоднородное магнитное поле?

Вокруг прямого проводника с током;

Вокруг полосового магнита;

Вокруг соленоида (катушки с током).

ОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ

Характеристика однородного магнитного поля: магнитные линии параллельные прямые;густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, динакова во всех точках этого поля по величине направлению.

Где существует однородное магнитное поле?
- внутри полосового магнита и внутри соленоида, если его длина много больше, чем диаметр.



ИНТЕРЕСНО

Способность железа и его сплавов сильно намагничиваться исчезает при нагревании до высокой температуры. Чистое железо теряет такую способность при нагревании до 767 °С.

Мощные магниты, используемые во многих современных товарах, способны влиять на работу электронных стимуляторов сердца и вживленных сердечных устройств у кардиологических пациентов. Обычные железные или ферритовые магниты, которые легко отличить по тускло-серой окраске, обладают небольшой силой и практически не вызывают беспокойств.
Однако недавно появились очень сильные магниты - блестяще-серебристые по цвету и представляющие собой сплав неодима, железа и бора. Создаваемое ими магнитное поле очень сильно, благодаря чему они широко применяются в компьютерных дисках, наушниках и динамиках, а также в игрушках, украшениях и даже одежде.

Однажды на рейде главного города Майорки, появилось французское военное судно "Ля-Ролейн". Состояние его было настолько жалким, что корабль едва дошел своим ходом до причала.. Когда на борт судна взошли французские ученые, в том числе двадцати двухлетний Араго, выяснилось, что корабль был разрушен молнией. Пока комиссия осматривала судно, покачивая головами при виде обгоревших мачт и надстроек, Араго поспешил к компасам и увидел то, что ожидал: стрелки компасов указывали в разные стороны...

Через год, копаясь в останках разбившегося вблизи Алжира генуэзского судна, Араго обнаружил, что стрелки компасов ыли размагничены В кромешной тьме туманной ночи капитан, направив по компасу судно к северу, подальше опасных мест, на самом деле неудержимо гался к тому, чего так старался избежать. Корабль шел к югу, о к скалам, обманутый пораженным молнией магнитным компасом.

В. Карцев. Магнит за три тысячелетия.

Магнитный компас был изобретен в Китае.
Уже 4000 лет тому назад караванщики брали с собой глиняный горшок и "берегли его в пути пуще всех своих дорогих грузов". В нем на поверхности жидкости на деревянном поплавке лежал камень, любящий железо. Он мог поворачиваться и, все время указывал путникам в сторону юга, что при отсутствии Солнца помогало им выходить к колодцам.
В начале нашей эры китайцы научились изготавливать искусственные магниты, намагничивая железную иглу.
И только через тысячу лет намагниченную иглу для компаса стали применять европейцы.


МАГНИТНОЕ ПОЛЕ ЗЕМЛИ

Земля - это большой постоянный магнит.
Южный магнитный полюс, хоть и расположен, по земным меркам, вблизи Северного географического полюса, их, тем не менее, разделяют около 2000 км.
На поверхности Земли имеются территории, где ее собственное магнитное поле сильно искажено магнитным полем железных руд, залегающих на небольшой глубине. Одна из таких территорий – Курская магнитная аномалия, расположенная в Курской области.

Магнитная индукция магнитного поля Земли составляет всего около 0,0004Теслы.
___

На магнитное поле Земли оказывает влияние повышенная солнечная активность. Примерно один раз в каждые 11.5 лет она возрастает настолько, что нарушается радиосвязь, ухудшается самочувствие людей и животных, а стрелки компасов начинают непредсказуемо "плясать" из стороны в сторону. В таком случае говорят, что наступает магнитная буря. Обычно она длится от нескольких часов до нескольких суток.

Магнитное поле Земли время от времени изменяет свою ориентацию, совершая и вековые колебания (длительностью 5–10 тыс. лет), и полностью переориентируясь, т.е. меняя местами магнитные полюсы (2–3 раза за миллион лет). На это указывают «вмороженное» в осадочные и вулканические породы магнитное поле отдаленных эпох. Поведение геомагнитного поля нельзя назвать хаотичным, оно подчиняется своеобразному «расписанию».

Направление и величина геомагнитного поля задаются процессами, происходящими в ядре Земли. Характерное время переполюсовки, определяемое внутренним твердым ядром, составляет от 3 до 5 тыс. лет, а определяемое внешним жидким ядром – около 500 лет. Этими временами и может обьясняться наблюдаемая динамика геомагнитного поля. Компьютерное моделирование с учетом различных внутриземных процессов ьпоказало возможность переполюсовки магнитного поля примерно за 5 тыс. лет.

ФОКУСЫ С МАГНИТАМИ

"Храм очарований, или механический, оптический и физический кабинет г. Гамулецкого де Колла" известного русского иллюзиониста Гамулецкого, просуществовавший до 1842 года, прославился помимо всего прочего тем, что посетители, поднимавшиеся по украшенной канделябрами и устланной коврами лестнице, еще издали могли заметить на верхней площадке лестницы золоченую фигуру ангела, выполненную в натуральный человеческий рост, которая парила в горизонтальном положении над дверью кабинета не будучи подвешена, ни оперта. В том, что фигура не имела никаких подпорок, мог убедиться каждый желающий. Когда посетители вступали на площадку, ангел поднимал руку, подносил ко рту валторну и играл на ней, шевеля пальцами самым естественным образом. Десять лет - говорил Гамулецкий, - я трудился, чтобы найти точку и вес магнита и железа, дабы удержать ангела в воздухе. Помимо трудов немало и средств употребил я на это чудо".

В средние века весьма распространенным иллюзионным номером были так называемые "послушные рыбы", изготовлявшиеся из дерева. Они плавали в бассейне и повиновались малейшему мановению руки фокусника, который заставлял их двигаться во всевозможных направлениях. Секрет фокуса был чрезвычайно прост: в рукаве у фокусника был спрятан магнит, а в головы рыб вставлены кусочки железа.
Более близкими к нам по времени были манипуляции англичанина Джонаса. Его коронный номер: Джонас предлагал некоторым зрителям положить часы на стол, после чего он, не прикасаясь к часам, произвольно менял положение стрелок.
Современным воплощением такой идеи является хорошо известные электрикам электромагнитные муфты, с помощью которых можно вращать устройства, отделенные от двигателя какой-нибудь преградой, например, стеной.

В середине 80-х годов 19 века пронеслась молва об ученом слоне, который умел не только складывать и вычитать, но даже умножать, делить и извлекать корни. Делалось это следующим образом. Дрессировщик, например, спрашивал слона: "Сколько будет семью восемь?" Перед слоном стояла доска с цифрами. После вопроса слон брал указку и уверенно показывал цифру 56. Точно так же производилось деление и извлечение квадратного корня. Фокус был достаточно прост: под каждой цифрой на доске был спрятан небольшой электромагнит. Когда слону задавался вопрос, в обмотку магнита, расположенного означающей правильный ответ, подавался ток. Железная указка в хоботе слона сама притягивалась к правильной цифре. Ответ получался автоматически. Несмотря на всю простоту этой дрессировки, секрет фокуса долгое время не могли разгадать, и "ученый слон" пользовался громадным успехом.

> Линии магнитного поля

Как определить силовые линии магнитного поля : схема силы и направлений линий магнитного поля, использование компаса для определения магнитных полюсов, рисунок.

Линии магнитного поля полезны для визуального отображения силы и направления магнитного поля.

Задача обучения

  • Соотнести силы магнитного поля с плотностью линий магнитного поля.

Основные пункты

  • Направление магнитного поля отображает стрелки компаса, касающиеся линий магнитного поля в любой указанной точке.
  • Сила В-поля выступает обратно пропорциональной дистанции между линиями. Она также точно пропорциональна числу линий на единицу площади. Одна линия никогда не пересекает другую.
  • Магнитное поле уникально в каждой точке пространства.
  • Линии не прерываются и создают замкнутые петли.
  • Линии тянутся с северного к южному полюсу.

Термины

  • Линии магнитного поля – графическое изображение величины и направления магнитного поля.
  • В-поле – синоним для магнитного поля.

Линии магнитного поля

Говорят, что в детстве Альберт Эйнштейн обожал разглядывать компас, размышляя о том, как игла ощущает силу без прямого физического контакт. Глубокое мышление и серьезный интерес, привели к тому, что ребенок вырос и создал свою революционную теорию относительности.

Так как магнитные силы влияют на удаленности, мы вычисляем магнитное поля для отображения этих сил. Графическая передача линий полезна для визуализации силы и направления магнитного поля. Вытянутость линий указывает на северную ориентацию стрелки компаса. Магнитное именуют В-полем.

(а) – Если для сопоставления магнитного поля вокруг стержневого магнита используют небольшой компас, то он покажет нужное направление от северного полюса к южному. (b) – Добавление стрелок создает непрерывные линии магнитного поля. Сила выступает пропорциональной близости линий. (с) – Если можно изучить внутренность магнита, то линии отобразятся в виде замкнутых петель

Нет ничего сложного в сопоставлении магнитного поля объекта. Для начала вычислите силу и направление магнитного поля в нескольких местах. Отметьте эти точки векторами, указывающими в направлении локального магнитного поля с величиной, пропорциональной его силе. Можно объединить стрелки, и сформировать линии магнитного поля. Направление в любой точке выступит параллельным направлению ближайших линий поля, а локальная плотность способна быть пропорциональной прочности.

Силовые линии магнитного поля напоминают контурные на топографических картах, так как показывают нечто непрерывное. Многие законы магнетизма можно сформулировать при помощи простых понятий, вроде количества полевых линий сквозь поверхность.

Направление линий магнитного поля, представленных выравниванием железных опилок на бумаге, расположенной над стержневым магнитом

На отображение линий влияют различные явления. Например, железные опилки на линии магнитного поля создают линии, которые соответствуют магнитным. Также они визуально отображаются в полярных сияниях.

Отправленный в поле небольшой компас выравнивается параллельно линии поля, а северный полюс укажет на В.

Миниатюрные компасы можно использовать для демонстрации полей. (а) – Магнитное поле круглого токового контура напоминает магнитное. (b) – Длинный и прямой провод формирует поле с линиями магнитного поля, создающего круговые петли. (с) – Когда провод оказывается в плоскости бумаги, то поле выступает перпендикулярным бумаге. Отметьте, какие именно символы используют для поля, указывающего внутрь и наружу

Детальное изучение магнитных полей помогло вывести ряд важных правил:

  • Направление магнитного поля касается линии поля в любой точке пространства.
  • Сила поля выступает пропорциональной близости линии. Она также точно пропорциональна количеству линий на единицу площади.
  • Линии магнитного поля никогда не сталкиваются, а значит в любой точке пространства магнитное поле будет уникальным.
  • Линии остаются непрерывными и следуют с северного к южному полюсу.

Последнее правило основывается на том, что полюса нельзя разделить. И это отличается от линий электрического поля, в которых конец и начало знаменуется положительными и отрицательными зарядами.

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.

Таким образом, индукция магнитного поля на оси кругового витка с током убывает обратно пропорционально третьей степени расстояния от центра витка до точки на оси. Вектор магнитной индукции на оси витка параллелен оси. Его направление можно определить с помощью правого винта: если направить правый винт параллельно оси витка и вращать его по направлению тока в витке, то направление поступательного движения винта покажет направление вектора магнитной индукции.

3.5 Силовые линии магнитного поля

Магнитное поле, как и электростатическое, удобно представлять в графической форме – с помощью силовых линий магнитного поля.

Силовая линия магнитного поля – это линия, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции.

Силовые линии магнитного поля проводят так, что их густота пропорциональна величине магнитной индукции: чем больше магнитная индукция в некоторой точке, тем больше густота силовых линий.

Таким образом, силовые линии магнитного поля имеют сходство с силовыми линиями электростатического поля.

Однако им свойственны и некоторые особенности.

Рассмотрим магнитное поле, созданное прямым проводником с током I.

Пусть этот проводник перпендикулярен плоскости рисунка.

В различных точках, расположенных на одинаковых расстояниях от проводника, индукция одинакова по величине.

Направление вектора В в разных точках показано на рисунке.

Линией, касательная к которой во всех точках совпадает с направлением вектора магнитной индукции, является окружность.

Следовательно, силовые линии магнитного поля в этом случае представляют собой окружности, охватывающие проводник. Центры всех силовых линий расположены на проводнике.

Таким образом, силовые линии магнитного поля замкнуты (силовые линии электростатического не могут быть замкнуты, они начинаются и заканчиваются на зарядах).

Поэтому магнитное поле является вихревым (так называют поля, силовые линии которых замкнуты).

Замкнутость силовых линий означает ещё одну, очень важную особенность магнитного поля – в природе не существует (по крайней мере, пока не обнаружено) магнитных зарядов, которые являлись бы источником магнитного поля определённой полярности.

Поэтому не бывает отдельно существующе-го северного или южного магнитного полюса магнита.

Даже если распилить пополам постоянный магнит, то получится два магнита, каждый из которых имеет оба полюса.

3.6. Сила Лоренца

Экспериментально установлено, что на заряд, движущийся в магнитном поле, действует сила. Эту силу принято называть силой Лоренца:

.

Модуль силы Лоренца

,

где a – угол между векторами v и B .

Направление силы Лоренца зависит от направления вектора . Его можно определить с помощью правила правого винта или правила левой руки. Но направление силы Лоренца не обязательно совпадает с направлением вектора !

Дело в том, что сила Лоренца равна результату произведения вектора [v , В ] на скаляр q . Если заряд положительный, то F л параллельна вектору [v , В ]. Если же q < 0, то сила Лоренца противоположна направлению вектора [v , В ] (см. рисунок).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то угол a между векторами скорости и магнитной индукции равен нулю. Следовательно, сила Лоренца на такой заряд не действует (sin 0 = 0, F л = 0).

Если же заряд будет двигаться перпендикулярно силовым линиям магнитного поля, то угол a между векторами скорости и магнитной индукции равен 90 0 . В этом случае сила Лоренца имеет максимально возможное значение: F л = qv B .

Сила Лоренца всегда перпендикулярна скорости движения заряда. Это означает, что сила Лоренца не может изменить величину скорости движения, но изменяет её направление.

Поэтому в однородном магнитном поле заряд, влетевший в магнитное поле перпендикулярно его силовым линиям, будет двигаться по окружности.

Если на заряд действует только сила Лоренца, то движение заряда подчиняется следующему уравнению, составленному на основе второго закона Ньютона: ma = F л.

Поскольку сила Лоренца перпендикулярна скорости, постольку ускорение заряженной частицы является центростремительным (нормальным): (здесь R – радиус кривизны траектории заряженной частицы).

1. Описание свойств магнитного поля, как и поля электрического, часто весьма облегчается введением в рассмотрение так называемых силовых линий этого поля. По определению, магнитными силовыми линиями называются линии, направление касательных к которым в каждой точке поля совпадает с направлением напряженности поля в той же точке. Дифференциальное уравнение этих линий, очевидно, будет иметь вид уравнение (10.3)]

Магнитные силовые линии, как и линии электрические, проводятся обычно с таким расчетом, чтобы в любом участке поля число линий, пересекающих перпендикулярную к ним площадку единичной поверхности, было по возможности пропорционально напряженности поля на этой площадке; однако, как увидим ниже, требование это далеко не всегда выполнимо.

2 Основываясь на уравнении (3.6)

мы пришли в § 10 к следующему выводу: электрические силовые линии могут начинаться или кончаться только в тех точках поля, в которых расположены электрические заряды. Применяя же теорему Гаусса (17 к потоку магнитного вектора, мы на основании уравнения (47.1) получим

Таким образом, в отличие от потока электрического вектора поток магнитного вектора через произвольную замкнутую поверхность всегда равен нулю. Это положение является математическим выражением того факта, что магнитных зарядов, подобных зарядам электрическим, не существует: магнитное поле возбуждается не магнитными зарядами, а движением зарядов электрических (т. е. токами). Основываясь на этом положении и на сравнении уравнения (53.2) с уравнением (3.6), нетрудно убедиться путем приведенных в § 10 рассуждений, что магнитные силовые линии ни в каких точках поля не могут ни начинаться, ни кончаться

3. Из этого обстоятельства обычно делается вывод, что магнитные силовые линии в отличие от линий электрических должны быть линиями замкнутыми либо идти из бесконечности в бесконечность.

Действительно, оба эти случая возможны. Согласно результатам решения задачи 25 в § 42 силовые линии в поле бесконечного прямолинейного тока представляют собой перпендикулярные току окружности с центром на оси тока. С другой стороны (см. задачу 26), направление магнитного вектора в поле кругового тока во всех точках, лежащих на оси тока, совпадает с направлением этой оси. Таким образом, ось кругового тока совпадает с силовой линией, идущей из бесконечности в бесконечность; чертеж, приведенный на рис. 53, представляет собой разрез кругового тока меридиональной плоскостью (т. е. плоскостью,

перпендикулярной плоскости тока и проходящей через его центр), на котором штриховыми линиями изображены силовые линии этого тока

Возможен, однако, и третий случай, на который не всегда обращается внимание, а именно: силовая линия может не иметь ни начала, ни конца и вместе с тем не быть замкнутой и не идти из бесконечности в бесконечность. Этот случай имеет место, если силовая линия заполняет собой некоторую поверхность и притом, пользуясь математическим термином, заполняет ее всюду плотно. Проще всего пояснить это на конкретном примере.

4. Рассмотрим поле двух токов - кругового плоского тока и бесконечного прямолинейного тока идущего по оси тока (рис. 54). Если бы существовал один лишь ток то силовые линии поля этого тока лежали бы в меридиональных плоскостях и имели бы вид, изображенный на предыдущем рисунке. Рассмотрим одну из этих линий, изображенную на рис. 54 штриховой линией. Совокупность всех подобных ей линий, которые могут быть получены вращением меридиональной плоскости вокруг оси образует собой поверхность некоторого кольца или тора (рис. 55).

Силовые же линии поля прямолинейного тока представляют собой концентрические окружности. Стало быть, в каждой точке поверхности как так и касательны к этой поверхности; следовательно, и вектор напряженности результирующего поля тоже касателен к ней. Это значит, что каждая силовая линия поля проходящая через одну какую-нибудь точку поверхности должна лежать на этой поверхности всеми своими точками. Линия эта, очевидно, будет представлять собой винтовую линию на

поверхности тора Ход этой винтовой линии будет зависеть от соотношения сил токов и от положения и формы поверхности Очевидно, что лишь при некотором определенном подборе этих условий винтовая линия эта будет замыкаться; вообще же говоря, при продолжении линии новые витки ее будут ложиться между прежними витками. При неограниченном продолжении линии она подойдет как угодно близко к любой раз пройденной точке, но никогда вторично в нее не вернется. А это и значит, что, оставаясь незамкнутой, линия эта всюду плотно заполнит поверхность тора .

5. Чтобы строго доказать возможность существования незамкнутых силовых линий, введем на поверхности тора ортогональные криволинейные координаты у (азимут меридиональной плоскости) и (полярный угол в меридиональной плоскости с вершиной, расположенной на пересечении этой плоскости с осью кольца, - рис. 54).

Напряженность полей на поверхности тора является функцией одного лишь угла причем вектор направлен по направлению возрастания (или убывания) этого угла, а вектор по направлению возрастания (или убывания) угла Пусть есть расстояние данной точки поверхности от центральной линии тора, расстояние ее от вертикальной оси тока Как нетрудно убедиться, элемент длины линии, лежащей на выразится формулой

Соответственно этому дифференциальное уравнение линий сил [ср. уравнение (53.1)] на поверхности примет вид

Приняв во внимание, что пропорциональны силам токов и интегрируя, получим

где есть некоторая функция угла не зависящая от .

Чтобы линия была замкнутой, т. е. чтобы она возвращалась в начальную точку, необходимо, чтобы некоторому целому числу оборотов линии вокруг тора соответствовало целое же число оборотов ее вокруг вертикальной оси. Иными словами, необходимо, чтобы можно было найти два таких целых числа пит, чтобы возрастанию угла на соответствовало возрастание угла на

Примем теперь во внимание, что представляет собой интеграл периодической функции угла с периодом Как известно, интеграл

периодической функции в общем случае является суммой функции периодической и функции линейной. Значит,

где К есть некоторая постоянная, есть функция с периодом Стало быть,

Внося это в предыдущее уравнение, получим условие замкнутости силовых линий на поверхности тора

Здесь К есть величина, от не зависящая. Очевидно, что два целых числа пят, удовлетворяющих этому условию, могут быть найдены лишь в том случае, если величина - К является числом рациональным (целым или дробным); это будет иметь место лишь при определенном соотношении между силами токов Вообще говоря, - К будет величиной иррациональной и, стало быть, силовые линии на рассматриваемой поверхности тора будут незамкнутыми. Однако и в этом случае всегда можно подобрать целое число так, чтобы - как угодно мало отличалось от некоторого целого числа Это значит, что незамкнутая силовая линия после достаточного числа оборотов как угодно близко подойдет к любой, раз пройденной точке поля. Аналогичным путем можно показать, что линия эта после достаточного числа оборотов как угодно близко подойдет к любой наперед заданной точке поверхности а это значит по определению, что она всюду плотно заполняет эту поверхность.

6. Существование незамкнутых магнитных силовых линий, всюду плотно заполняющих некоторую поверхность делает, очевидно, не возможным точное графическое изображение поля с помощью этих линий. В частности, далеко не всегда можно удовлетворить требованию, чтобы число линий, пересекающих перпендикулярную им единичную площадку, было пропорционально напряженности поля на этой площадке. Так, например, в только что рассмотренном случае одна и та же незамкнутая линия бесконечное число раз пересечет любую конечную площадку, пересекающую поверхность кольца

Впрочем, при надлежащей осмотрительности пользование понятием силовых линий является хотя и приближенным, но все же удобным и наглядным способом описания магнитного поля.

7. Согласно уравнению (47.5), циркуляция вектора напряженности магнитного поля по кривой, не охватывающей токов, равна нулю, циркуляция же по кривой, охватывающей токи, равна умноженной на сумме сил охватываемых токов (взятых с надлежащими знаками). Циркуляция вектора по силовой линии не может равняться нулю (ввиду параллельности элемента длины силовой линии и вектора величина существенно положительна). Следовательно, каждая замкнутая магнитная силовая линия должна охватывать хотя бы один из несущих ток проводников. Больше того, незамкнутые силовые линии, плотно заполняющие некоторую поверхность (если только они не идут из бесконечности в бесконечность), также должны обвиваться вокруг токов Действительно, интеграл вектора по почти замкнутому витку такой линии существенно положителен. Стало быть, циркуляция по замкнутому контуру, получаемому из этого витка добавлением замыкающего его произвольно малого отрезка, отлична от нуля. Следовательно, контур этот должен пронизываться током.



Понравилась статья? Поделитесь ей
Наверх