У каких элементов степень окисления 1. Основные способы получения оксидов

В настоящее время описание химии любого элемента начинают с электронной формулы, выделения особых валентных электронов и сведений о степенях окисления, проявляемых элементов в соединениях.

Количество валентных электронов и тип орбиталей, на которых они находятся, определяет степени окисления, проявляемых элементом при образовании соединений .

Степень окисления металла определяется количеством электронов, участвующих в образовании связи с более электроотрицательными элементами (например, с кислородом, галогенами, серой и др.). Будем обозначать степень окисления элемента Х Э . Предельно возможная (максимальная) степень окисления определяется общим числом валентных электронов. При образовании соединения металл может использовать не все свои валентные электроны, в этом случае металл оказывается в некоторой промежуточной степени окисления. При этом для металлов р- и d-блоков, как правило, характерно несколько степеней окисления. Для каждого металла среди промежуточных степеней окисления можно выделить наиболее характерные, т.е. степени окисления, проявляемые металлом в своих распространенных и относительно устойчивых соединениях.

  • Степени окисления, проявляемые s- и р-металлами

    У всех s-элементов есть только одна степень окисления, совпадающая с общим числом валентных электронов, т.е. все s-элементы 1 группы имеют степень окисления +1, а элементы второй группы +2.

    У р-элементов из-за различий в энергии s- и p-орбиталей последнего слоя дифференцируются две степени окисления. Одна степень окисления определяется числом электронов на внешних р-орбиталях, а другая - общим количеством валентных электронов. Только у р-элементов 13 группы устойчивой является одна степень окисления +3, кроме Tl с более устойчивой степенью окисления +1.

    У р-элементов 14 группы есть две степени окисления +2 и +4 .

    У Bi есть две степени окисления +3 и +5 .

    Особая «чувствительность» s-электронов к ядру, приводящая к тому, что при большом заряде ядра s- электроны сильнее им удерживаются, объясняет, почему у р-элементов 6 периода становится устойчивой степень окисления, связанная с потерей только р-электронов. У р-элементов шестого периода устойчивы степени окисления: +1 у Tl, +2 - у Pb и + 3- у Bi.
    В таблице приведены степени окисления, проявляемые металлами s- и р-блоков.

    Степени окисления, проявляемые металлами s- и р-блоков

    периоды ряды Группы
    1 2 13 14 15
    В. e- ns 1 ns 2 ns 2 np 1 ns 2 np 2 ns 2 np 3
    II Li
    +1
    Be
    +2
    III 3 Na
    +1
    Mg
    +2
    Al
    (1), 3
    IV 4 K
    +1
    Ca
    +2
    Ga
    (1), 3
    V 5 Rb
    +1
    Sr
    +2
    In
    (1), 3
    Sn
    2 , 4
    VI 6 Cs
    +1
    Ba
    +2
    Tl
    1 , 3
    Pb
    2 , 4
    Bi
    3 , 5
  • Степени окисления d-металлов

    Только d-элементы 3 и 12 групп имеют по одной степени окисления. У элементов 13 группы она равна общему числу электронов, т.е. +3. У элементов 12 группы d-орбитали полностью заполнены электронами и в образовании химических связей участвуют только два электрона с внешней s-орбитали, поэтому элементы 12 группы имеют одну степень окисления +2.

    Максимальную степень окисления, обусловленную общим количеством электронов, проявляют только d-элементы 3 ¸ 7 групп. А также и Os и Ru, проявляющие степень окисления +8. При движении к концу переходных рядов с ростом числа электронов на d-орбиталях и повышением эффективного заряда ядра самая большая степень окисления становится меньше общего числа валентных электронов.

  • Существуют большие различия между d-элементами четвертого и элементами 5 и 6 периодов .

    Из-за различий в энергии s-электронов 4 слоя и d-электронов 3 слоя все элементы 4 периода, кроме Sc, проявляют степень окисления +2, связанную с потерей двух электронов с внешней ns-орбитали. У многих элементов степень окисления +2 является устойчивой и ее устойчивость увеличивается к концу ряда.

    У d-элементов 4 периода наиболее устойчивыми являются низкие степени окисления +2, +3, +4 .

    При большом заряде ядра s-электроны сильнее удерживаются, различие в энергиях ns- и (n-1)d-орбиталей уменьшается, и это приводит к тому, что у d-элементов 5 и 6 периодов высшие степени окисления в 3 ¸ 7 группах становятся самыми устойчивыми. Вообще, у d-элементов 5 и 6 периодов устойчивы высокие степени окисления больше 4 . Исключение составляют d-элементы 3,11 и 12 групп.

    В приведенных ниже таблицах указаны характерные степени окисления d-металлов, красным цветом выделены наиболее устойчивые. В таблицу не включены степени окисления, проявляемые металлами в редких и неустойчивых соединениях.
    При описании химии любого элемента обязательно указывают характерные для него степени окисления.

  • Валентные электроны и наиболее характерные степени окисления для d-элементов 4 периода

    группа 3 4 5 6 7 8 9 10 11 I2
    Металлы 4 периода 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn

    В
    e-

    3d 1
    4s 2

    3d 2
    4s 2

    3d 3
    4s 2

    3d 5
    4s 1

    3d 5
    4s 2

    3d 6
    4s 2

    3d 7
    4s 2

    3d 8
    4s 2

    3d 10
    4s 1

    3d 10
    4s 2
    Х max 3 4 5 6 7 6 3 (4) 3 (4) 2 (3) 2
    Наиболее
    характерные Х
    3 2, 3,4 2, 3, 4,5 2,3,6 2, 3, 4 6, 7 2, 3, 6 2, 3 2, 3 1, 2 2
    Наиболее
    устойчивые Х
    3 4 4, 5 3 2, 4 2, 3 2 2 2 2
    Х в природных соединениях 3 4 4, 5 3, 6 4, 2, 3 3, 2 2 2 2, 1 2
  • Наиболее характерные степени окисления для d-элементов 5 и 6 периодов

    группа 3 4 5 6 7 8 9 10 11 I2
    Металлы 5 периода 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd
    В e-
    4d 1 5s 2 4d 2 5s 2 4d 4 5s 1 4d 5 5s 1 4d 6 5s 1 4d 7 5s 1 4d 8 5s 1 4d 10 5s 0 4d 10 5 s 1 4d 10 5s 2
    Х max
    3 4 5 6 7 8 6 4 3 2
    Наиболее
    характерные Х
    3 4 5 4, 6 4, 7 4 , 6,7,8 3, 4,5,6 2, 4 1, 2,3 2
    Наиболее
    устойчивые Х
    3 4 5 6 7 4 3 2 1 2
    Х в природных соединениях 3 4 5 4, 6 нет в природе 0 0 0 0, 1 2
    Металлы 6 периода 57 La 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg
    В e-
    5d 1 6s 2 5d 2 6s 2 5d 3 6s 2 5d 4 6s 2 5d 5 6s 2 5d 6 6s 2 5d 7 6s 2 5d 9 6s 1 5d 10 6s 1 5d 10 6s 2
    Х max 3 4 5 6 7 8 6 4 (6) 3 2
    Наиболее
    характерные Х
    3 4 4, 5 4, 5, 6 4 ,5 6,7 4 , 6,7,8 3,4 ,5,6 2 ,4 , 6 1 , 3 2
    Более
    устойчивые Х
    3 4 5 6 7, 4 4 4 4 1 2
    Х в природных соединениях 3 4 5 6 4 0 0 0 0 2

  • Все соединения металлов в положительных степенях окисления способны проявлять окислительные свойства и восстанавливаться. Металлы и получают, восстанавливая соединения металла либо природные, либо предварительно полученные из природных минералов.

    Соединения, содержащие элемент в любой степени окисления, меньшей, чем максимальная, способны окисляться, терять электроны и проявлять восстановительные свойства.

    У соединений, содержащих металл в низкой и неустойчивой степени окисления, выражены восстановительные свойства. Так, например, соединения Ti(+2), V(+2), Cr(+2) восстанавливают воду.

    2VO + 2H 2 O = 2VOOH + H 2

    Вещества, содержащие элемент в высоких и неустойчивых степенях окисления, обычно проявляют сильные окислительные свойства, как например, соединения Mn и Cr в степенях окисления 6 и 7. Сильные окислительные свойства проявляет оксид PbO 2 и соли Bi(+5). У этих элементов высшие степени окисления неустойчивы.

  • все s-элементы 1 группы имеют степень окисления +1,
  • s-элементы второй группы +2.
  • Для р-элементов характерны две степени окисления, исключение составляют элементы 3 группы. Одна степень окисления определяется числом электронов на внешних р-орбиталях, а другая - общим количеством валентных электронов.
    • У р-элементов 13 группы устойчивой является одна степень окисления +3, кроме Tl с более устойчивой степенью окисления +1.
    • У р-элементов 14 группы есть две степени окисления +2 и +4.
    • У Bi есть две степени окисления +3 и +5.
  • Металлы d-блока из-за большого числа валентных электронов проявляют многообразие степеней окисления.
    • Существуют большие различия между d-элементами четвертого и элементами 5 и 6 периодов.
    • Все элементы 4 периода, кроме Sc, проявляют степень окисления +2, связанную с потерей двух электронов с внешней ns-орбитали. У многих элементов степень окисления +2 является устойчивой и ее устойчивость увеличивается к концу ряда.
    • У d-элементов 4 периода более устойчивыми являются низкие степени окисления +2, +3, +4.
    • У d-элементов 5 и 6 периодов устойчивы высокие степени окисления ³ 4. Исключение составляют d-элементы 3,11 и 12 групп.
    • Максимальную степень окисления, обусловленную общим количеством электронов, проявляют только d-элементы 3 ¸ 7 групп, а также Os и Ru, проявляющие степень окисления +8.
    • Характерные степени окисления металлов указаны в таблицах.
    • Степень окисления - это важный стехиометрический параметр, позволяющий записывать химические формулы соединений
    • На степени окисления основывается окислительно-восстановительная классификация соединений. Cтепень окисления оказывается самой важной характеристикой металла при прогнозировании окислительно-восстановительных свойств его соединений.
    • При кислотно-основной классификации оксидов и гидроксидов также опираются на степень окисления металла. Высокие степени окисления > +5 обуславливают кислотные свойства, а степени окисления £ +4, обеспечивают основные свойства.
    • Роль степеней окисления велика в структурировании описания химии элемента, как правило, соединения группируют по степеням окисления.
  • Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

    Таблица. Степени окисления химических элементов.

    Таблица. Степени окисления химических элементов.

    Степень окисления - это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .
    1. Степени окисления металлов в соединениях всегда положительные.
    2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .
    3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
      • если с атомом металла, то степень окисления отрицательная;
      • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
    4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
    5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
    Таблица: Элементы с неизменными степенями окисления.

    Таблица. Степени окисления химических элементов по алфавиту.

    Элемент Название Степень окисления
    7 N -III, 0, +I, II, III, IV, V
    89 Ас
    13 Al

    Алюминий

    95 Am

    Америций

    0, + II , III, IV

    18 Ar
    85 At -I, 0, +I, V
    56 Ba
    4 Be

    Бериллий

    97 Bk
    5 B -III, 0, +III
    107 Bh
    35 Br -I, 0, +I, V, VII
    23 V

    0, + II , III, IV, V

    83 Bi
    1 H -I, 0, +I
    74 W

    Вольфрам

    64 Gd

    Гадолиний

    31 Ga
    72 Hf
    2 He
    32 Ge

    Германий

    67 Ho
    66 Dy

    Диспрозий

    105 Db
    63 Еu
    26 Fe
    79 Au
    49 In
    77 Ir
    39 Y
    70 Yb

    Иттербий

    53 I -I, 0, +I, V, VII
    48 Cd
    19 К
    98 Cf

    Калифорний

    20 Ca
    54 Xe

    0, + II , IV, VI, VIII

    8 O

    Кислород

    -II, I, 0, +II
    27 Co
    36 Кr
    14 Si -IV, 0, +11, IV
    96 Cm
    57 La
    3 Li
    103 Lr

    Лоуренсий

    71 Lu
    12 Mg
    25 Mn

    Марганец

    0, +II, IV, VI, VIII

    29 Cu
    109 Mt

    Мейтнерий

    101 Md

    Менделевий

    42 Mo

    Молибден

    33 As — III , 0 , +III, V
    11 Na
    60 Nd
    10 Ne
    93 Np

    Нептуний

    0, +III, IV, VI, VII

    28 Ni
    41 Nb
    102 No
    50 Sn
    76 Os

    0, +IV, VI, VIII

    46 Pd

    Палладий

    91 Pa.

    Протактиний

    61 Pm

    Прометий

    84 Рo
    59 Рг

    Празеодим

    78 Pt
    94 PU

    Плутоний

    0, +III, IV, V, VI

    88 Ra
    37 Rb
    75 Re
    104 Rf

    Резерфордий

    45 Rh
    86 Rn

    0, + II , IV, VI, VIII

    44 Ru

    0, +II, IV, VI, VIII

    80 Hg
    16 S -II, 0, +IV, VI
    47 Ag
    51 Sb
    21 Sc
    34 Se -II, 0,+IV, VI
    106 Sg

    Сиборгий

    62 Sm
    38 Sr

    Стронций

    82 РЬ
    81 Тl
    73 Ta
    52 Te -II, 0, +IV, VI
    65 Tb
    43 Tc

    Технеций

    22 Ti

    0, + II , III, IV

    90 Th
    69 Tm
    6 C -IV, I, 0, +II, IV
    92 U
    100 Fm
    15 P -III, 0, +I, III, V
    87 Fr
    9 F -I, 0
    108 Hs
    17 Cl
    24 Cr

    0, + II , III , VI

    55 Cs
    58 Ce
    30 Zn
    40 Zr

    Цирконий

    99 ES

    Эйнштейний

    68 Еr

    Таблица. Степени окисления химических элементов по номеру.

    Элемент Название Степень окисления
    1 H -I, 0, +I
    2 He
    3 Li
    4 Be

    Бериллий

    5 B -III, 0, +III
    6 C -IV, I, 0, +II, IV
    7 N -III, 0, +I, II, III, IV, V
    8 O

    Кислород

    -II, I, 0, +II
    9 F -I, 0
    10 Ne
    11 Na
    12 Mg
    13 Al

    Алюминий

    14 Si -IV, 0, +11, IV
    15 P -III, 0, +I, III, V
    16 S -II, 0, +IV, VI
    17 Cl -I, 0, +I, III, IV, V, VI, VII
    18 Ar
    19 К
    20 Ca
    21 Sc
    22 Ti

    0, + II , III, IV

    23 V

    0, + II , III, IV, V

    24 Cr

    0, + II , III , VI

    25 Mn

    Марганец

    0, +II, IV, VI, VIII

    26 Fe
    27 Co
    28 Ni
    29 Cu
    30 Zn
    31 Ga
    32 Ge

    Германий

    33 As — III , 0 , +III, V
    34 Se -II, 0,+IV, VI
    35 Br -I, 0, +I, V, VII
    36 Кr
    37 Rb
    38 Sr

    Стронций

    39 Y
    40 Zr

    Цирконий

    41 Nb
    42 Mo

    Молибден

    43 Tc

    Технеций

    44 Ru

    0, +II, IV, VI, VIII

    45 Rh
    46 Pd

    Палладий

    47 Ag
    48 Cd
    49 In
    50 Sn
    51 Sb
    52 Te -II, 0, +IV, VI
    53 I -I, 0, +I, V, VII
    54 Xe

    0, + II , IV, VI, VIII

    55 Cs
    56 Ba
    57 La
    58 Ce
    59 Рг

    Празеодим

    60 Nd
    61 Pm

    Прометий

    62 Sm
    63 Еu
    64 Gd

    Гадолиний

    65 Tb
    66 Dy

    Диспрозий

    67 Ho
    68 Еr
    69 Tm
    70 Yb

    Иттербий

    71 Lu
    72 Hf
    73 Ta
    74 W

    Вольфрам

    75 Re
    76 Os

    0, +IV, VI, VIII

    77 Ir
    78 Pt
    79 Au
    80 Hg
    81 Тl
    82 РЬ
    83 Bi
    84 Рo
    85 At -I, 0, +I, V
    86 Rn

    0, + II , IV, VI, VIII

    87 Fr
    88 Ra
    89 Ас
    90 Th
    91 Pa.

    Протактиний

    92 U
    93 Np

    Нептуний

    0, +III, IV, VI, VII

    94 PU

    Плутоний

    0, +III, IV, V, VI

    95 Am

    Америций

    0, + II , III, IV

    96 Cm
    97 Bk
    98 Cf

    Калифорний

    99 ES

    Эйнштейний

    100 Fm
    101 Md

    Менделевий

    102 No
    103 Lr

    Лоуренсий

    104 Rf

    Резерфордий

    105 Db
    106 Sg

    Сиборгий

    107 Bh
    108 Hs
    109 Mt

    Мейтнерий

    Оценка статьи:

    В школе химия до сих пор занимает место одного из самых сложных предметов, который, ввиду того, что скрывает множество затруднений, вызывает у учеников (обычно это в период с 8 по 9 классы) больше ненависти и безразличия к изучению, чем интереса. Всё это снижает качество и количество знаний по предмету, хотя во многих сферах по сей день требуются специалисты в этой области. Да, сложных моментов и непонятных правил в химии иногда даже больше, чем кажется. Один из вопросов, которые волнуют большинство учеников, это что такое степень окисления и как определять степени окисления элементов.

    Важное правило – правило расстановки, алгоритмы

    Здесь много говорится о таких соединениях, как оксиды. Для начала, любой ученик должен выучить определение оксидов - это сложные соединения из двух элементов, в их составе находится кислород. К классу бинарных соединений оксиды относят по той причине, что в алгоритме кислород стоит вторым по очереди. При определении показателя важно знать правила расстановки и рассчитать алгоритм.

    Алгоритмы для кислотных оксидов

    Степени окисления - это численные выражения валентности элементов. К примеру, кислотные оксиды образованы по определённому алгоритму: сначала идут неметаллы или металлы (их валентность обычно от 4 до 7), а после идёт кислород, как и должно быть, вторым по порядку, его валентность равняется двум. Определяется она легко - по периодической таблице химических элементов Менделеева. Также важно знать то, что степень окисления элементов - это показатель, который предполагает либо положительное, либо отрицательное число .

    В начале алгоритма, как правило, неметалл, и его степень окисления - положительная. Неметалл кислород в оксидных соединениях имеет стабильное значение, которое равняется -2. Чтобы определить верность расстановки всех значений, нужно умножить все имеющиеся цифры на индексы у одного конкретного элемента, если произведение с учётом всех минусов и плюсов равняется 0, то расстановка достоверна.

    Расстановка в кислотах, содержащих кислород

    Кислоты являются сложными веществами , они связаны с каким-либо кислотным остатком и содержат в себе один или несколько атомов водорода. Здесь, для вычисления степени, требуются навыки в математике, так как показатели, необходимые для вычисления, цифровые. У водорода или протона он всегда одинаков – +1. У отрицательного иона кислорода отрицательная степень окисления -2.

    После проведения всех этих действий можно определить степень окисления и центрального элемента формулы. Выражение для её вычисления представляет собой формулу в виде уравнения. Например, для серной кислоты уравнение будет с одним неизвестным.

    Основные термины в ОВР

    ОВР – это восстановительно-окислительные реакции .

    • Степень окисления любого атома - характеризует способность этого атома присоединять или отдавать другим атомам электроны ионов (или атомов);
    • Принято считать окислителями либо заряженные атомы, либо незаряженные ионы;
    • Восстановителем в этом случае будут заряженные ионы или же, напротив, незаряженные атомы, которые теряют свои электроны в процессе химического взаимодействия;
    • Окисление заключается в отдаче электронов.

    Как расставлять степень окисления в солях

    Соли состоят из одного металла и одного или нескольких кислотных остатков. Методика определения такая же, как и в кислотосодержащих кислотах.

    Металл, который непосредственно образует соль, располагается в главной подгруппе, его степень будет равна номеру его группы, то есть всегда будет оставаться стабильным, положительным показателем.

    В качестве примера можно рассмотреть расстановку степеней окисления в нитрате натрия. Соль образуется с помощью элемента главной подгруппы 1 группы, соответственно, степень окисления будет являться положительной и равна единице. В нитратах кислород имеет одного значение – -2. Для того чтобы получить численное значение, для начала составляется уравнение с одним неизвестным, учитывая все минусы и плюсы у значений: +1+Х-6=0. Решив уравнение, можно прийти к тому факту, что численный показатель положителен и равен + 5. Это показатель азота. Важный ключ чтобы высчитать степень окисления – таблица .

    Правило расстановки в основных оксидах

    • Оксиды типичных металлов в любых соединениях имеют стабильный показатель окисления, он всегда не больше +1, или в других случаях +2;
    • Цифровой показатель металла вычисляется при помощи периодической таблицы. Если элемент содержится в главной подгруппе 1 группы, то его значение будет +1;
    • Значение оксидов, учитывая и их индексы, после умножения суммировано должны быть равны нулю, т.к. молекула в них нейтральна, частица, лишённая заряда;
    • Металлы основной подгруппы 2 группы также имеют устойчивый положительный показатель, который равен +2.

    Современная формулировка Периодического закона, открытого Д. И. Менделеевым в 1869 г.:

    Свойства элементов находятся в периодической зависимости от порядкового номера.

    Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Периодической системы.

    Проследим, например, изменение высших и низших степеней окисления у элементов IA – VIIA-групп во втором – четвертом периодах по табл. 3.

    Положительные степени окисления проявляют все элементы, за исключением фтора. Их значения увеличиваются с ростом заряда ядер и совпадают с числом электронов на последнем энергетическом уровне (за исключением кислорода). Эти степени окисления называют высшими степенями окисления. Например, высшая степень окисления фосфора Р равна +V.




    Отрицательные степени окисления проявляют элементы, начиная с углерода С, кремния Si и германия Ge. Значения их равны числу электронов, недостающих до восьми. Эти степени окисления называют низшими степенями окисления. Например, у атома фосфора Р на последнем энергетическом уровне недостает трех электронов до восьми, значит, низшая степень окисления фосфора Р равна – III.

    Значения высших и низших степеней окисления повторяются периодически, совпадая по группам; например, в IVA-группе углерод С, кремний Si и германий Ge имеют высшую степень окисления +IV, а низшую степень окисления – IV.

    Эта периодичность изменения степеней окисления отражается на периодическом изменении состава и свойств химических соединений элементов.

    Аналогично прослеживается периодическое изменение электроотрицательности элементов в 1-6-м периодах IA– VIIA-групп (табл. 4).

    В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо).




    В каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Фтор F обладает наивысшей, а цезий Cs – наинизшей электроотрицательностью среди элементов 1-6-го периодов.

    У типичных неметаллов – высокая электроотрицательность, а у типичных металлов – низкая.

    Примеры заданий частей А, В

    1. В 4-м периоде число элементов равно


    2. Металлические свойства элементов 3-го периода от Na до Сl

    1) силиваются

    2) ослабевают

    3) не изменяются

    4) не знаю


    3. Неметаллические свойства галогенов с увеличением порядкового номера

    1) возрастают

    2) понижаются

    3) остаются без изменений

    4) не знаю


    4. В ряду элементов Zn – Hg – Со – Cd один элемент, не входящий в группу, – это


    5. Металлические свойства элементов повышаются по ряду

    1) In – Ga – Al

    2) К – Rb – Sr

    3) Ge – Ga – Tl

    4) Li – Be – Mg


    6. Неметаллические свойства в ряду элементов Аl – Si – С – N

    1) увеличиваются

    2) уменьшаются

    3) не изменяются

    4) не знаю


    7. В ряду элементов О – S – Se – Те размеры (радиусы) атома

    1) уменьшаются

    2) увеличиваются

    3) не изменяются

    4) не знаю


    8. В ряду элементов Р – Si – Аl – Mg размеры (радиусы) атома

    1) уменьшаются

    2) увеличиваются

    3) не изменяются

    4) не знаю


    9. Для фосфора элемент с меньшей электроотрицательностью – это


    10. Молекула, в которой электронная плотность смещена к атому фосфора, – это


    11. Высшая степень окисления элементов проявляется в наборе оксидов и фторидов

    1) СlO 2 , РСl 5 , SeCl 4 , SO 3

    2) PCl, Аl 2 O 3 , КСl, СО

    3) SeO 3 , ВСl 3 , N 2 O 5 , СаСl 2

    4) AsCl 5 , SeO 2 , SCl 2 , Cl 2 O 7


    12. Низшая степень окисления элементов – в их водородных соединениях и фторидах набора

    1) ClF 3 , NH 3 , NaH, OF 2

    2) H 3 S + , NH+, SiH 4 , H 2 Se

    3) CH 4 , BF 4 , H 3 O + , PF 3

    4) PH 3 , NF+, HF 2 , CF 4


    13. Валентность для многовалентного атома одинакова в ряду соединений

    1) SiH 4 – AsH 3 – CF 4

    2) РН 3 – BF 3 – ClF 3

    3) AsF 3 – SiCl 4 – IF 7

    4) H 2 O – BClg – NF 3


    14. Укажите соответствие между формулой вещества или иона и степенью окисления углерода в них



    Для характеристики окислительно-восстановительной способности частиц важное значение имеет такое понятие, как степень окисления. СТЕПЕНЬ ОКИСЛЕНИЯ – это заряд, который мог бы возникнуть у атома в молекуле или ионе, если бы все его связи с другими атомами оказались разорваны, а общие электронные пары ушли с более электроотрицательными элементами.

    В отличие от реально существующих зарядов у ионов, степень окисления показывает лишь условный заряд атома в молекуле. Она может быть отрицательной, положительной и нулевой. Например, степень окисления атомов в простых веществах равна «0» (,
    ,,). В химических соединениях атомы могут иметь постоянную степень окисления или переменную. У металлов главных подгруппI, II и III групп Периодической системы в химических соединениях степень окисления, как правило, постоянна и равна соответственно Ме +1 , Ме +2 и Ме +3 (Li + , Ca +2 , Al +3). У атома фтора всегда -1. У хлора в соединениях с металлами всегда -1. В подавляющем числе соединений кислород имеет степень окисления -2 (кроме пероксидов, где его степень окисления -1), а водород +1(кроме гидридов металлов, где его степень окисления -1).

    Алгебраическая сумма степеней окисления всех атомов в нейтральной молекуле равна нулю, а в ионе – заряду иона. Эта взаимосвязь позволяет рассчитывать степени окисления атомов в сложных соединениях.

    В молекуле серной кислоты H 2 SO 4 атом водорода имеет степень окисления +1, а атом кислорода -2. Так как атомов водорода два, а атомов кислорода четыре, то мы имеем два «+» и восемь «-». До нейтральности не хватает шесть «+». Именно это число и является степенью окисления серы -
    . Молекула дихромата калияK 2 Cr 2 O 7 состоит из двух атомов калия, двух атомов хрома и семи атомов кислорода. У калия степень окисления всегда +1, у кислорода -2. Значит, мы имеем два «+» и четырнадцать «-». Оставшиеся двенадцать «+» приходятся на два атома хрома, у каждого из которых степень окисления равна +6 (
    ).

    Типичные окислители и восстановители

    Из определения процессов восстановления и окисления следует, что, в принципе, в роли окислителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в низшей степени окисления и поэтому могут понижать свою степень окисления. Аналогично в роли восстановителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в высшей степени окисления и поэтому могут повышать свою степень окисления.

    К наиболее сильным окислителям относятся:

    1) простые вещества, образуемые атомами, имеющими большую электроотрицательность, т.е. типичные неметаллы, расположенные в главных подгруппах шестой и седьмой групп периодической системы: F, O, Cl, S (соответственно F 2 , O 2 , Cl 2 , S);

    2) вещества, содержащие элементы в высших и промежуточных

    положительных степенях окисления, в том числе в виде ионов, как простых, элементарных (Fe 3+), так и кислородосодержащих, оксоанионов (перманганат-ион - MnO 4 -);

    3) перекисные соединения.

    Конкретными веществами, применяемыми на практике в качестве окислителей, являются кислород и озон, хлор, бром, перманганаты, дихроматы, кислородные кислоты хлора и их соли (например,
    ,
    ,
    ), азотная кислота (
    ), концентрированная серная кислота (
    ), диоксид марганца (
    ), пероксид водорода и пероксиды металлов (
    ,
    ).

    К наиболее сильным восстановителям относятся:

    1)простые вещества, атомы которых имеют низкую электроотрицательность («активные металлы»);

    2) катионы металлов в низжих степенях окисления (Fe 2+);

    3) простые элементарные анионы, например, сульфид-ион S 2- ;

    4) кислородосодержащие анионы (оксоанионы), соответствующие низшим положительным степеням окисления элемента (нитрит
    , сульфит
    ).

    Конкретными веществами, применяемыми на практике в качестве восстановителей, являются, например, щелочные и щелочноземельные металлы, сульфиды, сульфиты, галогенводороды (кроме HF), органические вещества – спирты, альдегиды, формальдегид, глюкоза, щавелевая кислота, а также водород, углерод, моноксид углерода (
    ) и алюминий при высоких температурах.

    В принципе, если в состав вещества входит элемент в промежуточной степени окисления, то эти вещества могут проявлять как окислительные, так и восстановительные свойства. Все зависит от

    «партнера» по реакции: с достаточно сильным окислителем оно может реагировать как восстановитель, а с достаточно сильным восстановителем – как окислитель. Так, например, нитрит-ион NO 2 - в кислой среде выступает в роли окислителя по отношению к иону I - :

    2
    + 2+ 4HCl→ + 2
    + 4KCl + 2H 2 O

    и в роли восстановителя по отношению к перманганат-иону MnO 4 -

    5
    + 2
    + 3H 2 SO 4 → 2
    + 5
    +K 2 SO 4 + 3H 2 O



    Понравилась статья? Поделитесь ей
    Наверх