Найти точку максимума функции алгоритм. Значения функции и точки максимума и минимума

Во многих задачах требуется вычислить максимальное или минимальное значение квадратичной функции. Максимум или минимум можно найти, если исходная функция записана в стандартном виде: или через координаты вершины параболы: f (x) = a (x − h) 2 + k {\displaystyle f(x)=a(x-h)^{2}+k} . Более того, максимум или минимум любой квадратичной функции можно вычислить с помощью математических операций.

Шаги

Квадратичная функция записана в стандартном виде

    Запишите функцию в стандартном виде. Квадратичная функция - это функция, уравнение которой включает переменную x 2 {\displaystyle x^{2}} . Уравнение может включать или не включать переменную x {\displaystyle x} . Если уравнение включает переменную с показателем степени больше 2, оно не описывает квадратичную функцию. Если нужно, приведите подобные члены и переставьте их, чтобы записать функцию в стандартном виде.

    • Например, дана функция f (x) = 3 x + 2 x − x 2 + 3 x 2 + 4 {\displaystyle f(x)=3x+2x-x^{2}+3x^{2}+4} . Сложите члены с переменной x 2 {\displaystyle x^{2}} и члены с переменной x {\displaystyle x} , чтобы записать уравнение в стандартном виде:
      • f (x) = 2 x 2 + 5 x + 4 {\displaystyle f(x)=2x^{2}+5x+4}
  1. График квадратичной функции представляет собой параболу. Ветви параболы направлены вверх или вниз. Если коэффициент a {\displaystyle a} при переменной x 2 {\displaystyle x^{2}} a {\displaystyle a}

    • f (x) = 2 x 2 + 4 x − 6 {\displaystyle f(x)=2x^{2}+4x-6} . Здесь a = 2 {\displaystyle a=2}
    • f (x) = − 3 x 2 + 2 x + 8 {\displaystyle f(x)=-3x^{2}+2x+8} . Здесь , поэтому парабола направлена вниз.
    • f (x) = x 2 + 6 {\displaystyle f(x)=x^{2}+6} . Здесь a = 1 {\displaystyle a=1} , поэтому парабола направлена вверх.
    • Если парабола направлена вверх, нужно искать ее минимум. Если парабола направлена вниз, ищите ее максимум.
  2. Вычислите -b/2a. Значение − b 2 a {\displaystyle -{\frac {b}{2a}}} – это координата x {\displaystyle x} вершины параболы. Если квадратичная функция записывается в стандартном виде a x 2 + b x + c {\displaystyle ax^{2}+bx+c} , воспользуйтесь коэффициентами при x {\displaystyle x} и x 2 {\displaystyle x^{2}} следующим образом:

    • В функции коэффициенты a = 1 {\displaystyle a=1} и b = 10 {\displaystyle b=10}
      • x = − 10 (2) (1) {\displaystyle x=-{\frac {10}{(2)(1)}}}
      • x = − 10 2 {\displaystyle x=-{\frac {10}{2}}}
    • В качестве второго примера рассмотрим функцию . Здесь a = − 3 {\displaystyle a=-3} и b = 6 {\displaystyle b=6} . Поэтому координату «x» вершины параболы вычислите так:
      • x = − b 2 a {\displaystyle x=-{\frac {b}{2a}}}
      • x = − 6 (2) (− 3) {\displaystyle x=-{\frac {6}{(2)(-3)}}}
      • x = − 6 − 6 {\displaystyle x=-{\frac {6}{-6}}}
      • x = − (− 1) {\displaystyle x=-(-1)}
      • x = 1 {\displaystyle x=1}
  3. Найдите соответствующее значение f(x). Подставьте найденное значение «x» в исходную функцию, чтобы найти соответствующее значение f(x). Так вы найдете минимум или максимум функции.

    • В первом примере f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1} вы вычислили, что координата «х» вершины параболы равна x = − 5 {\displaystyle x=-5} . В исходной функции вместо x {\displaystyle x} подставьте − 5 {\displaystyle -5}
      • f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1}
      • f (x) = (− 5) 2 + 10 (− 5) − 1 {\displaystyle f(x)=(-5)^{2}+10(-5)-1}
      • f (x) = 25 − 50 − 1 {\displaystyle f(x)=25-50-1}
      • f (x) = − 26 {\displaystyle f(x)=-26}
    • Во втором примере f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4} вы нашли, что координата «х» вершины параболы равна x = 1 {\displaystyle x=1} . В исходной функции вместо x {\displaystyle x} подставьте 1 {\displaystyle 1} , чтобы найти ее максимальное значение:
      • f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4}
      • f (x) = − 3 (1) 2 + 6 (1) − 4 {\displaystyle f(x)=-3(1)^{2}+6(1)-4}
      • f (x) = − 3 + 6 − 4 {\displaystyle f(x)=-3+6-4}
      • f (x) = − 1 {\displaystyle f(x)=-1}
  4. Запишите ответ. Перечитайте условие задачи. Если нужно найти координаты вершины параболы, в ответе запишите оба значения x {\displaystyle x} и y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Если необходимо вычислить максимум или минимум функции, в ответе запишите только значение y {\displaystyle y} (или f (x) {\displaystyle f(x)} ). Еще раз посмотрите на знак коэффициента a {\displaystyle a} , чтобы проверить, что вы вычислили: максимум или минимум.

    • В первом примере f (x) = x 2 + 10 x − 1 {\displaystyle f(x)=x^{2}+10x-1} значение a {\displaystyle a} положительное, поэтому вы вычислили минимум. Вершина параболы лежит в точке с координатами (− 5 , − 26) {\displaystyle (-5,-26)} , а минимальное значение функции равно − 26 {\displaystyle -26} .
    • Во втором примере f (x) = − 3 x 2 + 6 x − 4 {\displaystyle f(x)=-3x^{2}+6x-4} значение a {\displaystyle a} отрицательное, поэтому вы нашли максимум. Вершина параболы лежит в точке с координатами (1 , − 1) {\displaystyle (1,-1)} , а максимальное значение функции равно − 1 {\displaystyle -1} .
  5. Определите направление параболы. Для этого посмотрите на знак коэффициента a {\displaystyle a} . Если коэффициент a {\displaystyle a} положительный, парабола направлена вверх. Если коэффициент a {\displaystyle a} отрицательный, парабола направлена вниз. Например:

    • . Здесь a = 2 {\displaystyle a=2} , то есть коэффициент положительный, поэтому парабола направлена вверх.
    • . Здесь a = − 3 {\displaystyle a=-3} , то есть коэффициент отрицательный, поэтому парабола направлена вниз.
    • Если парабола направлена вверх, нужно вычислить минимальное значение функции. Если парабола направлена вниз, необходимо найти максимальное значение функции.
  6. Найдите минимальное или максимальное значение функции. Если функция записана через координаты вершины параболы, минимум или максимум равен значению коэффициента k {\displaystyle k} . В приведенных выше примерах:

    • f (x) = 2 (x + 1) 2 − 4 {\displaystyle f(x)=2(x+1)^{2}-4} . Здесь k = − 4 {\displaystyle k=-4} . Это минимальное значение функции, потому что парабола направлена вверх.
    • f (x) = − 3 (x − 2) 2 + 2 {\displaystyle f(x)=-3(x-2)^{2}+2} . Здесь k = 2 {\displaystyle k=2} . Это максимальное значение функции, потому что парабола направлена вниз.
  7. Найдите координаты вершины параболы. Если в задаче требуется найти вершину параболы, ее координаты равны (h , k) {\displaystyle (h,k)} . Обратите внимание, когда квадратичная функция записана через координаты вершины параболы, в скобки должна быть заключена операция вычитания (x − h) {\displaystyle (x-h)} , поэтому значение h {\displaystyle h} берется с противоположным знаком.

    • f (x) = 2 (x + 1) 2 − 4 {\displaystyle f(x)=2(x+1)^{2}-4} . Здесь в скобки заключена операция сложения (x+1), которую можно переписать так: (x-(-1)). Таким образом, h = − 1 {\displaystyle h=-1} . Поэтому координаты вершины параболы этой функции равны (− 1 , − 4) {\displaystyle (-1,-4)} .
    • f (x) = − 3 (x − 2) 2 + 2 {\displaystyle f(x)=-3(x-2)^{2}+2} . Здесь в скобках находится выражение (x-2). Следовательно, h = 2 {\displaystyle h=2} . Координаты вершины равны (2,2).

Как вычислить минимум или максимум с помощью математических операций

  1. Сначала рассмотрим стандартный вид уравнения. Запишите квадратичную функцию в стандартном виде: f (x) = a x 2 + b x + c {\displaystyle f(x)=ax^{2}+bx+c} . Если нужно, приведите подобные члены и переставьте их, чтобы получить стандартное уравнение.

    • Например: .
  2. Найдите первую производную. Первая производная квадратичной функции, которая записана в стандартном виде, равна f ′ (x) = 2 a x + b {\displaystyle f^{\prime }(x)=2ax+b} .

    • f (x) = 2 x 2 − 4 x + 1 {\displaystyle f(x)=2x^{2}-4x+1} . Первая производная этой функции вычисляется следующим образом:
      • f ′ (x) = 4 x − 4 {\displaystyle f^{\prime }(x)=4x-4}
  3. Производную приравняйте к нулю. Напомним, что производная функции равна угловому коэффициенту функции в определенной точке. В минимуме или максимуме угловой коэффициент равен нулю. Поэтому, чтобы найти минимальное или максимальное значение функции, производную нужно приравнять к нулю. В нашем примере.

Алгоритм нахождения данных точек оговаривался уже неоднократно, кратко повторюсь:

1. Находим производную функции.

2. Находим нули производной (приравниваем производную к нулю и решаем уравнение).

3. Далее строим числовую ось, на ней отмечаем найденные точки и определяем знаки производной на полученных интервалах. *Это делается путём подстановки произвольных значений из интервалов в производную.

Если вы совсем не знакомы со свойствами производной для исследования функций, то обязательно изучите статью « ». Также повторите таблицу производных и правила дифференцирования (имеются в этой же статье). Рассмотрим задачи:

77431. Найдите точку максимума функции у = х 3 –5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 – 10х + 7 = 0

у(0) " = 3∙0 2 – 10∙0 + 7 = 7 > 0

у(2) " = 3∙2 2 – 10∙2 + 7 = – 1< 0

у(3) " = 3∙3 2 – 10∙3 + 7 = 4 > 0

В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 1

77432. Найдите точку минимума функции у = х 3 +5х 2 +7х–5.

Найдём производную функции:

Найдем нули производной:

3х 2 + 10х + 7 = 0

Решая квадратное уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) " = 3∙(–3) 2 + 10∙(–3) + 7 = 4 > 0

у( –2 ) "= 3∙(–2) 2 + 10∙(–2) + 7 = –1 < 0

у(0 ) "= 3∙0 2 – 10∙0 + 7 = 7 > 0


В точке х = –1 производная меняет свой знак с отрицательного на положительный, значит это есть искомая точка минимума.

Ответ: –1

77435. Найдите точку максимума функции у = 7+12х–х 3

Найдём производную функции:

Найдем нули производной:

12 – 3х 2 = 0

х 2 = 4

Решая уравнение получим:

*Это точки возможного максимума (минимума) функции.

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –3 ) "= 12 – 3∙(–3) 2 = –15 < 0

у(0 ) "= 12 – 3∙0 2 = 12 > 0

у( 3 ) "= 12 – 3∙3 2 = –15 < 0

В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 2

*Для этой же функции точкой минимума является точка х = – 2.

77439. Найдите точку максимума функции у = 9х 2 – х 3 .

Найдём производную функции:

Найдем нули производной:

18х –3х 2 = 0

3х(6 – х) = 0

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –1 ) "= 18 (–1) –3 (–1) 2 = –21< 0

у(1 ) "= 18∙1 –3∙1 2 = 15 > 0

у(7 ) "= 18∙7 –3∙7 2 = –1< 0

В точке х = 6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: 6

*Для этой же функции точкой минимума является точка х = 0.

77443. Найдите точку максимума функции у = (х 3 /3)–9х–7.

Найдём производную функции:

Найдем нули производной:

х 2 – 9 = 0

х 2 = 9

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –4 ) "= (–4) 2 – 9 > 0

у(0 ) "= 0 2 – 9 < 0

у(4 ) "= 4 2 – 9 > 0

В точке х = – 3 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: – 3

9 – х 2 = 0

х 2 = 9

Решая уравнение получим:

Определяем знаки производной функции на интервалах и отметим их на эскизе. Подставляем произвольное значение из каждого интервала в выражение производной:

у( –4 ) "= 9 – (–4) 2 < 0

у(0 Решение .

На этом всё. Успеха вам!

С уважением, Александр Крутицких .

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

В этой статье мы рассмотрим несколько примеров на нахождение точек максимума (минимума) иррациональной функции. Алгоритм решения был уже неоднократно изложен в статьях с подобными заданиями, в одной из прошлых статей.

У вас может возникнуть вопрос – а чем рациональная функция отличается от иррациональной? У иррациональной функции, говоря простыми словами, аргумент находится под корнем, или степень у него это дробное число (несокращаемая дробь). Другой вопрос - в чём отличия в нахождении их точек максимума (минимума)? Да ни в чём.

Сам принцип и алгоритм решения заданий на определения точек максимума (минимума) един. Просто для удобства и систематизации материала я разбил его на несколько статей – отдельно рассмотрел рациональные, логарифмические, тригонометрические и прочие, осталось ещё несколько примеров на нахождение наибольшего (наименьшего) значения иррациональной функции на отрезке. Их мы тоже рассмотрим.

Давайте здесь подробно опишу нахождение производной, когда у аргумента имеется степень, во всех примерах ниже это используется.

Сама формула:

То есть, если у нас аргумент стоит в некоторой степени и требуется найти производную, то мы записывает это значение степени, умножаем его на аргумент, а его степень будет на единицу меньше, например:

Если же степень дробное число, то всё тоже самое:

Следующий момент! Конечно же, вы должны помнить свойства корней и степеней, а именно:

То есть, если в примере вы увидите, например, выражение (или подобное с корнем):

То при решении, чтобы вычислить производную, его необходимо представить как х в степени, будет так:

Остальные табличные производные и правила дифференцирования вы должны знать!!!

Правила дифференцирования:


Рассмотрим примеры:

77451. Найдите точку минимума функции y = x 3/2 – 3x + 1


Найдем нули производной:

Решаем уравнение:

В точке х = 4, производная меняет знак с отрицательного на положительный, это означает, что данная точка является точкой минимума.

Ответ: 4

77455. Найдите точку максимума функции

Найдём производную заданной функции:

Найдем нули производной:

Решаем уравнение:

Определим знаки производной функции и изобразим на рисунке поведение функции. Для этого подставим произвольные значения из полученных интервалов в производную:

В точке х = 4, производная меняет знак с положительного на отрицательный, это означает, что данная точка является точкой максимума.

Ответ: 4

77457. Найдите точку максимума функции

Найдём производную заданной функции:

Найдем нули производной:

Решая уравнение:

Определим знаки производной функции и изобразим на рисунке поведение функции. Для этого подставим произвольные значения из полученных интервалов в производную:

В точке х = 9, производная меняет знак с положительного на отрицательный, это означает, что данная точка является точкой максимума.

Ответ: 9

Здравствуйте! Ударим по приближающемуся ЕГЭ качественной систематической подготовкой, и упорством в измельчении гранита науки!!! В конце поста имеется конкурсная задача, будьте первым! В одной из статей данной рубрики мы с вами , в которых был дан график функции, и ставились различные вопросы, касающиеся экстремумов, промежутков возрастания (убывания) и прочие.

В этой статье рассмотрим задачи входящие в ЕГЭ по математике, в которых дан график производной функции, и ставятся следующие вопросы:

1. В какой точке заданного отрезка функция принимает наибольшее (или наименьшее) значение.

2. Найти количество точек максимума (или минимума) функции, принадлежащих заданному отрезку.

3. Найти количество точек экстремума функции, принадлежащих заданному отрезку.

4. Найти точку экстремума функции, принадлежащую заданному отрезку.

5. Найти промежутки возрастания (или убывания) функции и в ответе указать сумму целых точек, входящих в эти промежутки.

6. Найти промежутки возрастания (или убывания) функции. В ответе указать длину наибольшего из этих промежутков.

7. Найти количество точек, в которых касательная к графику функции параллельна прямой вида у = kx + b или совпадает с ней.

8. Найти абсциссу точки, в которой касательная к графику функции параллельна оси абсцисс или совпадает с ней.

Могут стоять и другие вопросы, но они не вызовут у вас затруднений, если вы поняли и (ссылки указаны на статьи, в которых представлена необходимая для решения информация, рекомендую повторить).

Основная информация (кратко):

1. Производная на интервалах возрастания имеет положительный знак.

Если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак.

Если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.

3. Производная в точке х равна угловому коэффициенту касательной, проведённой к графику функции в этой же точке.

4. В точках экстремума (максимума-минимума) функции производная равна нулю. Касательная к графику функции в этой точке параллельна оси ох.

Это нужно чётко уяснить и помнить!!!

Многих график производной «смущает». Некоторые по невнимательности принимают его за график самой функции. Поэтому в таких зданиях, где видите, что дан график, сразу же акцентируйте своё внимание в условии на том, что дано: график функции или график производной функции?

Если это график производной функции, то относитесь к нему как бы к «отражению» самой функции, которое просто даёт вам информацию об этой функции.

Рассмотрим задание:

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–2;21).


Ответим на следующие вопросы:

1. В какой точке отрезка функция f (х) принимает наибольшее значение.

На заданном отрезке производная функции отрицательна, значит функция на этом отрезке убывает (она убывает от левой границы интервала к правой). Таким образом, наибольшее значение функции достигается на левой границе отрезка, т. е. в точке 7.

Ответ: 7

2. В какой точке отрезка функция f (х)

По данному графику производной можем сказать следующее. На заданном отрезке производная функции положительна, значит функция на этом отрезке возрастает (она возрастает от левой границы интервала к правой). Таким образом, наименьшее значение функции достигается на левой границе отрезка, то есть в точке х = 3.

Ответ: 3

3. Найдите количество точек максимума функции f (х)

Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. Рассмотрим, где таким образом меняется знак.

На отрезке (3;6) производная положительна, на отрезке (6;16) отрицательна.

На отрезке (16;18) производная положительна, на отрезке (18;20) отрицательна.

Таким образом, на заданном отрезке функция имеет две точки максимума х = 6 и х = 18.

Ответ: 2

4. Найдите количество точек минимума функции f (х) , принадлежащих отрезку .

Точки минимума соответствуют точкам смены знака производной с отрицательного на положительный. У нас на интервале (0;3) производная отрицательна, на интервале (3;4) положительна.

Таким образом, на отрезке функция имеет только одну точку минимума х = 3.

*Будьте внимательны при записи ответа – записывается количество точек, а не значение х, такую ошибку можно допустит из-за невнимательности.

Ответ: 1

5. Найдите количество точек экстремума функции f (х) , принадлежащих отрезку .

Обратите внимание, что необходимо найти количество точек экстремума (это и точки максимума и точки минимума).

Точки экстремума соответствуют точкам смены знака производной (с положительного на отрицательный или наоборот). На данном в условии графике это нули функции. Производная обращается в нуль в точках 3, 6, 16, 18.

Таким образом, на отрезке функция имеет 4 точки экстремума.

Ответ: 4

6. Найдите промежутки возрастания функции f (х)

Промежутки возрастания данной функции f (х) соответствуют промежуткам, на которых ее производная положительна, то есть интервалам (3;6) и (16;18). Обратите внимание, что границы интервала не входят в него (круглые скобки – границы не включены в интервал, квадратные – включены). Данные интервалы содержат целые точки 4, 5, 17. Их сумма равна: 4 + 5 + 17 = 26

Ответ: 26

7. Найдите промежутки убывания функции f (х) на заданном интервале. В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. В данной задаче это интервалы (–2;3), (6;16), (18;21).

Данные интервалы содержат следующие целые точки: –1, 0, 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20. Их сумма равна:

(–1) + 0 + 1 + 2 + 7 + 8 + 9 + 10 +

11 + 12 + 13 + 14 + 15 + 19 + 20 = 140

Ответ: 140

*Обращайте внимание в условии: включены ли границы в интервал или нет. Если границы будут включены, то и в рассматриваемых в процессе решения интервалах эти границы также необходимо учитывать.

8. Найдите промежутки возрастания функции f (х)

Промежутки возрастания функции f (х) соответствуют промежуткам, на которых производная функции положительна. Мы уже указывали их: (3;6) и (16;18). Наибольшим из них является интервал (3;6), его длина равна 3.

Ответ: 3

9. Найдите промежутки убывания функции f (х) . В ответе укажите длину наибольшего из них.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. Мы уже указывали их, это интервалы (–2;3), (6;16), (18;21), их длины соответственно равны 5, 10, 3.

Длина наибольшего равна 10.

Ответ: 10

10. Найдите количество точек, в которых касательная к графику функции f (х) параллельна прямой у = 2х + 3 или совпадает с ней.

Значение производной в точке касания равно угловому коэффициенту касательной. Так как касательная параллельна прямой у = 2х + 3 или совпадает с ней, то их угловые коэффициенты равны 2. Значит, необходимо найти количество точек, в которых у′(х 0) = 2. Геометрически это соответствует количеству точек пересечения графика производной с прямой у = 2. На данном интервале таких точек 4.

Ответ: 4

11. Найдите точку экстремума функции f (х) , принадлежащую отрезку .

Точка экстремума функции это такая точка, в которой её производная равна нулю, при чём в окрестности этой точки производная меняет знак (с положительного на отрицательный или наоборот). На отрезке график производной пересекает ось абсцисс, производная меняет знак с отрицательного на положительный. Следовательно, точка х = 3 является точкой экстремума.

Ответ: 3

12. Найдите абсциссы точек, в которых касательные к графику у = f (x) параллельны оси абсцисс или совпадают с ней. В ответе укажите наибольшую из них.

Касательная к графику у = f (x) может быть параллельна оси абсцисс или совпадать с ней, только в точках, где производная равна нулю (это могут быть точки экстремума или стационарные точки, в окрестностях которых производная свой знак не меняет). По данному графику видно, что производная равна нулю в точках 3, 6, 16,18. Наибольшая равна 18.

Можно построить рассуждение таким образом:

Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, её угловой коэффициент равен 0 (действительно тангенс угла в ноль градусов равен нулю). Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс, а это точки 3, 6, 16,18.

Ответ: 18

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–8;4). В какой точке отрезка [–7;–3] функция f (х) принимает наименьшее значение.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;14). Найдите количество точек максимума функции f (х) , принадлежащих отрезку [–6;9].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–18;6). Найдите количество точек минимума функции f (х) , принадлежащих отрезку [–13;1].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11; –11). Найдите количество точек экстремума функции f (х) , принадлежащих отрезку [–10; –10].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;4). Найдите промежутки возрастания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–5;7). Найдите промежутки убывания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11;3). Найдите промежутки возрастания функции f (х) . В ответе укажите длину наибольшего из них.


F На рисунке изображен график

Условие задачи то же (которую мы рассматривали). Найдите сумму трёх чисел:

1. Сумма квадратов экстремумов функции f (х).

2. Разность квадратов суммы точек максимума и суммы точек минимума функции f (х).

3. Количество касательных к f (х), параллельных прямой у = –3х + 5.

Первый, кто даст верный ответ, получит поощрительный приз – 150 рублей. Ответы пишите в комментариях. Если это ваш первый комментарий на блоге, то сразу он не появится, чуть позже (не беспокойтесь, время написания комментария регистрируется).

Успеха вам!

С уважением, Александр Крутицих.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.



Понравилась статья? Поделитесь ей
Наверх