Описание математических моделей прогнозирования опасных факторов пожара. Контрольная работа исходные понятия и общие сведения об опасных факторах пожара и методах их прогнозирования Интегральная модель пожара

Интегральная математическая модель пожара в помещении разработана на основе уравнений пожара, изложенных в работах . Эти уравнения вытекают из основных законов физики - закона сохранения вещества и первого закона термодинамики для открытой системы, и включаетв себя:

где V - объем помещения, м 3 ; m - среднеобъемная плотность газовой среды кг/м 3 ; - время, с; G в и G г - массовые расходы поступающего в помещение воздуха и уходящих из помещения газов, кг/с; - массовая скорость выгорания горючей нагрузки, кг/с.

уравнение баланса кислорода

где х 1 - среднеобъемная массовая концентрация кислорода в помещении; х 1в - концентрация кислорода в уходящих газах от среднеобъемного значения х 1 , n 1 = x 1г /х 1 ; L 1 - стехиометрическое соотношение «кислород - горючая нагрузка».

где х i - среднеобъемная концентрация i-го продукта горения; L i - удельное массовое выделение i-го продукта; n i - коэффициент, учитывающий отличие концентрации i-го продукта в уходящих газах x iг от среднеобъемного значения x i , n i = x iг /x i ;

уравнения баланса энергии

где Р m - среднеобъемное давление в помещении, Па, К m , С рm , Т m - среднеобъемные значения показателя адиабаты, изобарной теплоемкости и температуры в помещении; Q п н - теплота сгорания горючей нагрузки, Дж/кг; С рв; Т в - изобарная теплоемкость и температура поступающего воздуха; I п - энтальпия продуктов газификации горючего материала, Дж/кг; - коэффициент, учитывающий отличие среднеобъемной изобарной температуры Т m и среднеобъемной изобарной теплоемкости С рm от температуры Т г и изобарной теплоемкости С рг уходящих газов, = ; - коэффициент полноты сгорания; Q c - тепловой поток в ограждение, Вт.

Среднеобъемная температура Т m связана со среднеобъемным давлением Р m и плотностью m уравнением состояния

Р m = m R m Т m . (2.5)

Уравнения пожара при разработке программы были модифицированы с целью учета работы приточно-вытяжной системы механической вентиляции, а так же работы системы объемного тушения пожара инертным газом. При этом система уравнений принимает следующий вид:

уравнение материального баланса

где G пр и G выт - массовые расходы, создаваемые приточно-вытяжной вентиляции, кг/с; G ов - массовая подача огнетушащего вещества кг/с

Для учета влияния температурного режима на работу вентиляторов расхода G пр и G выт представлены в виде:

G пр = в W пр; (2.7)

G выт = m W выт, (2.8)

где в - плотность воздуха, кг/м 3 W пр и W выт - объемные производительности приточной и вытяжной подсистем, принимаемые постоянными.

Расход подачи ОВ так же принимается постоянным в интервале от момента включения системы пожаротушения до окончания запаса ОВ и равным нулю вне пределов этого интервала.

Уравнению (2.1) соответствует начальное условие:

где Р в - атмосферное давления на уровне половины высоты помещения, Па, R в - газовая постоянная воздуха, Дж/кгК; Т m (0) - начальная температура в помещении;

уравнение баланса энергии

где С ров и Т ов - изобарная теплоемкость и температура подаваемая через проемы, Q 0 - источниковый член, учитывающий работу систем отопления, в случае неравенства Т m (0) и Т в

Исходя из многочисленного экспериментального материала, левая часть уравнения (2.2) принимается равной нулю, а величина С рm - постоянной. Значение Q 0 вычисляется в нулевой момент времени и далее считается неизменным. Поскольку I п

Т с =Т m (0)+0,2[Т m -T m (0)]+0.00065[Т m -Т m (0)] 2

где m - среднеобъемная степень черноты среды в помещении; F г - суммарная площадь проемов, м 2 ; F c и T c - площадь конструкций и средняя температура их внутренней поверхности;

уравнение баланса кислорода

Начальные условия для этого уравнения является следующие

Х 1 (0) = х 1В = 0,23

уравнение баланса продуктов горения

Поскольку кинетика химических реакций не моделируется, а все L i полагаются постоянными, то, вводя новую переменную Xi=xi/Li получим в окончательном виде:

Начальным условием для этого уравнения является выражение

Из (2.4) следует, что концентрации всех продуктов горения подобны во времени и могут быть описаны одним общим уравнением:

Уравнение баланса количества дыма и оптической концентрации дыма получено:

где m - среднеобъемное значение оптического количества дыма в помещении; D - дымообразующая способность горючего материала; К с - коэффициент осаждения частиц дыма на поверхность конструкций. Этому уравнению соответствует следующее начальное условие m (0)=0.

Принято различать два основных режима пожара в помещении:

  • - пожар, регулируемый горючей нагрузкой (ПРН), когда кислорода в помещении достаточно и скорость выгорания определяется скоростью газификации горючего материала;
  • - пожар, регулируемый вентиляцией (ПРВ), когда кислорода в помещении очень мало и скорость выгорания определяется скоростью притока воздуха извне.

Подробная классификация достаточно условна. Режим пожара в помещении будет аналогичен режиму пожара на открытом воздухе лишь в случае х 1 =х 1В, т.е. только в нулевой момент времени. Соответственно, для реализации ПРВ требуется положить х 1 =0, т.е. весь поступающий в помещение кислород полностью расходуется на горение. В реальности кислородный режим пожара в помещении практически всегда является некоторым промежуточным режимом между ПРН и ПРВ.

Кислородный режим пожара численно характеризуется величиной безразмерного параметра к, значения которого изменяются от нуля до единицы, причем к=0 соответствует ПРВ, а к=1 - ПРН. Величина к является функцией концентрации кислорода в помещении: к=к(х 1). В соответствии с изложенным ранее, эта функция имеет минимум при х 1 =0 (равный нулю) и максимум при х 1 =х 1в, (равный единице). Кроме того, график функции к(х 1) должен иметь точку перегиба, причем единственную, которая физически соответствует переходу от преобладания одного режима пожара к преобладанию другого.

Всем перечисленным требованиям отвечает функция вида

где А, В, С - положительные коэффициенты, определяемые из изложенных выше граничных условий и экспериментальных данных.

где 0 и уд.0 - полнота сгорания и удельная скорость выгорания на открытом воздухе. Величина 0 может быть найдена по формуле

значение уд.0 является свойством, в основном, самой горючей нагрузки.

Легко заметить, что выражение (2.6) точно отражает физический смысл двух рассматриваемых режимов пожара и является интерполяционной формулой для промежуточных реальных режимов. Если использовать аналогичную формулу для

то (2.7) и (2.8) образуют систему двух уравнений с двумя неизвестными, из решения которых определяются и уд. .

Рассмотренный подход позволяет учесть в расчете влияние концентрации кислорода в помещении на процесс горения. Безусловно этот подход является в достаточной приближенным и вынужденным, поскольку более точное моделирование процесса горения, особенно в рамках интегральной модели наталкивается на ряд принципиальных трудностей. Как показали пробные расчеты и их сравнение с данными экспериментов, изложенный метод дает удовлетворительную для инженерной практики точность и может быть использован в случаях, когда более строгий подход не является необходимым.

Для расчета естественного газообмена в получены соотношения для случая, когда g m g в. Ниже эти соотношения приведены в формализованном виде:

где в i - ширина i-того проема; Y hi и Y bi - высота его нижнего и верхнего срезов.

Суммирование производится по всем открытым проемам, а высота нейтральной плоскости рассчитывается по формуле

где h - половина высоты помещения. Формальный параметр Z i определяется следующим образом:

Если горючим веществом является жидкость, площадь горения полагается неизменной и равной площади ее зеркала. В случае твердого материала задаются его линейные размеры и считается, что горение начинается в центре заданного прямоугольника. Если обозначить V л - мгновенное значение линейной скорости распространения пламени, то радиус зоны горения r г определяет уравнение причем r г (0)=0.

Если величина r г не превышает половину минимального размера, то из площади круга вычитается площадь соответствующих сегментов. Момент, когда значение r г становится равным полудиагонали заданного прямоугольника, расположение горючей нагрузки, считается моментом полного охвата пламенем всей горючей нагрузки и далее площадь горения считается неизменной. Так как F гор и уд известны, то полная скорость газификации рассчитывается, как их производная. В случае нестационарного горения жидкости полученное назначение умножается на величину, учитывающую эту нестационарность .

при < cт, где cт - время стабилизации горения.

Для расчета среднеобъемной температуры используются уравнения состояния

Т m =Р m /g m R m (2.19)

Степень черноты задымленной среды в помещении рассчитывается по известной формуле:

где l - средняя длина пути луча, определяется соотношением

где - эмпирический коэффициент для пересчета оптического диапазона в диапазон инфракрасных волн.

Для численной реализации модели использован метод Рунге-Кутта - Фельберга 4-5 порядка точности с переменным шагом. В качестве основы взята подпрограмма решения систем обыкновенных дифференциальных уравнений, доработанная с целью улучшения эксплуатационных характеристик.

Разработанная на кафедре инженерной теплофизики и гидравлики учебная компьютерная программа INTMODEL реализует описанную выше математическую модель и предназначена для расчета динамики пожара жидких и твердых горючих веществ и материалов в помещении имеющем от 1 до 9 проемов вертикальных ограждающих конструкций.

От известных аналогов программа отличается тем, что позволяет учитывать вскрытие проемов, работу систем механической вентиляции, и объемного тушения пожара инертным газом, а так же учитывает кислородный баланс пожара, позволяет рассчитывать концентрацию окиси и двуокиси углерода, задымленность помещения и дальность видимости в нем.

ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №2. «Основные понятия и уравнения интегральной математической модели пожара в помещении»

План лекции:

1.2 Среднеобъемная плотность газовой среды

Лекция 2.

Цели лекции:

  1. Учебные

В результате прослушивания материала слушатели должны знать:

  • опасные факторы пожара, воздействующие на людей, на конструкции и оборудование
  • предельно допустимые значения ОФП
  • методы прогнозирования ОФП

Уметь: прогнозировать обстановку на пожаре.

  1. Развивающие:
  • выделять самое главное
  • самостоятельность и гибкости мышления
  • развитие познавательного мышления

Литература

  1. Д.М. Рожков Прогнозирование опасных факторов пожара в помещении. – Иркутск 2007. С.89
  2. Ю.А.Кошмаров, М.П. Башкирцев Термодинамика и теплопередача в пожарном деле. ВИПТШ МВД СССР, М., 1987 г.
  3. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118
  4. Ю.А.Кошмаров, В.В. Рубцов, Процессы нарастания опасных факторов пожара в производственных помещениях и расчет критической продолжительности пожара. МИПБ МВД России, М., 1999 г.

Лекция 1. Основные понятия математической модели пожара в помещении

1.1 Допущения интегрального метода термодинамического анализа пожара

Интегральная математическая модель пожара описывает в самом общем виде процесс изменения во времени состояния газовой среды в помещении.

1) С позиций термодинамики газовая среда, заполняющая помещение с проемами (окна, двери и т.п.), как объект исследования есть открытая термодинамическая система (рис. 1.1).

2)Ограждающие конструкции (пол, потолок, стены) и наружный воздух (атмосфера) являются внешней средой по отношению к этой термодинамической системе. Граница между термодинамической системой и внешней средой (контрольная поверхность) показана условно на рис. 1.1 пунктирной линией. Эта система взаимодействует с внешней средой путем тепло- и массообмена. В процессе развития пожара через одни проемы выталкиваются из помещения нагретые газы, а через другие поступает холодный воздух.

3) Количество вещества, т.е. масса газа в рассматриваемой открытой термодинамической системе, в течение времени изменяется. Поступление холодного воздуха обусловлено работой проталкивания, которую совершает внешняя среда.

4) Термодинамическая система в свою очередь совершает работу, выталкивая нагретые газы во внешнюю атмосферу. Эта термодинамическая система взаимодействует также с ограждающими конструкциями путем теплообмена. Кроме того, в эту систему с поверхности горящего материала (т.е. из пламенной зоны) поступает вещество в виде газообразных продуктов горения.

Рис. 1.1. Схема пожара в помещении:

Контрольная поверхность;1 - ограждения; 2 - проемы (окна, двери); 3 – горящий материал; G г - расход уходящих газов; G в - расход поступающего холодного воздуха; ψ- скорость выгорания материала

Состояние рассматриваемой термодинамической системы изменяется в результате взаимодействия с окружающей средой. Приступая к изложению сути интегрального метода описания процесса изменения состояния рассматриваемой термодинамической системы, отметим прежде всего следующие два факта.

5) Всегда с большой точностью можно считать, что газовая среда внутри помещения при пожаре есть смесь идеальных газов.

6) В каждой точке пространства внутри помещения в любой момент времени реализуется локальное равновесие. Это означает, что локальные значения основных термодинамических параметров состояния (плотность, давление, температура) связаны между собой уравнением Клапейрона, т.е.

(2.1)

где р - локальное давление, Н·м -2 ; ρ - локальная плотность, кг·м -3 ; R - газовая постоянная, Дж·кг -1 К -1 ; Т - локальная температура, К.

При пожаре поля локальных термодинамических параметров состояния являются нестационарными и неоднородными. Расчет этих полей представляет собой чрезвычайно сложную математическую задачу. Интегральный метод описания состояния среды в помещении позволяет не рассматривать эту задачу.

7) Особенностью рассматриваемой термодинамической системы (т.е. газовой среды в помещении) является то, что ее объем (т.е. пространственная конфигурация) в процессе развития пожара практически не изменяется. В связи с этим в интегральном методе описания состояния термодинамической системы, коей является газовая среда в помещении, используются "интегральные" параметры состояния термодинамической системы среднеобъемные параметры - среднеобъемную плотность газовой среды и среднеобъемную (удельную) внутреннюю энергию.

Отношение этих двух интегральных параметров позволяет оценивать в среднем степень нагретости газовой среды. В процессе развития пожара значения указанных интегральных параметров состояния изменяются.

1.2 Среднеобъемная плотность газовой среды в помещении представляет собой отношение массы газа, заполняющего помещение, к объему помещения, т.е.

(2.2)

где М - масса газа, заполняющего помещение, кг; V - свободный объем помещения, м 3 . Нижний индекс т , используемый здесь и далее, представляет собой первую букву в немецком слове mittel (средний). Следует отметить, что

(2.3)

С формальных позиций среднеобъемная плотность газовой среды есть результат осреднения по объему помещения всех значений локальной плотности, т.е.

(2.4)

Газовая среда в помещении представляет собой смесь кислорода, азота и продуктов горения. В процессе развития пожара количественное соотношение между компонентами смеси изменяется. В интегральном методе описания процесса изменения массы i -го компонента смеси в течение времени используется параметр, называемый среднеобъемной парциальной плотностью i -го компонента смеси.

1.3 Среднеобъемная парциальная плотность i -го компонента представляет собой отношение массы i -го компонента смеси (например О 2 ), содержащейся в объеме помещения, к объему помещения, т.е.

(1.5)

(2.5)

где М, - масса i -го компонента, находящегося в помещении, кг. Отметим, что с формальной точки зрения среднеобъемная парциальная плотность i -го компонента есть результат осреднения по объему помещения всех значений локальной парциальной плотности этого компонента, т.е.

(2.6)

где ρ i , - локальное значение парциальной плотности i -го компонента, кг·м -3 .

1.4 Среднеобъемная (удельная) внутренняя энергия представляет собой отношение внутренней тепловой энергии всего газа, заполняющего помещение, к объему помещения, т.е.

(2.7)

где и - внутренняя энергия всей газовой среды, заполняющей помещение, Дж. С формальных позиций среднеобъемная внутренняя энергия газовой среды есть результат осреднения по объему всех значений локальной удельной (объемной) внутренней энергии, т.е.

(2.8)

где U V - локальное значение удельной (объемной) внутренней энергии, Дж·м -3 . Локальные значения удельной объемной внутренней энергии и удельной массовой внутренней энергии связаны между собой простым соотношением, которое имеет следующий вид:

(2.9)

где и - локальное значение удельной массовой внутренней энергии газа, Дж·кг. Отметим здесь, что между локальным значением удельной массовой внутренней энергии и локальной температурой идеального газа существует простая взаимосвязь, а именно

(2.10)

где c v - изохорная теплоемкость газа, Дж·кг·К.

В интегральном методе описания процесса изменения состояния термодинамической системы (т.е. газовой среды в помещении) вместо среднеобъемной внутренней энергии используется параметр состояния, называемый среднеобъемным давлением. Эти два параметра в формальном отношении являются взаимозаменяемыми. Покажем это. Формулу (2.8) можно преобразовать с помощью выражений (2.9) и (2.10)

(2.11)

Если теперь воспользоваться уравнением Клапейрона (2.1), то формулу (2.11) можно преобразовать и получить следующее выражение:

(2 . 12)

где p - локальное давление, Н·м -2 ;

к = C p / C V - отношение изобарной и изо хорной теплоемкостей идеального газа (показатель адиабаты). С достаточной для практики точностью можно считать, что показатель адиабаты во всех точках внутри помещения есть одна и та же постоянная величина. С учетом этого замечания формулу (2.12) можно преобразовать:

(2.13)

Выражение в прямоугольных скобках представляет собой операцию осреднения всех локальных значений давления по объему помещения. Результат этого осреднения называют среднеобъемным давлением, т.е.

(2.14)

где р т - среднеобъемное давление, Н·м -2

Сравнивая выражения (2.13) и (2.14), получим следующее соотношение между среднеобъемной внутренней энергией и среднеобъемным давлением:

(2.15)

Из последней формулы следует, что среднеобъемное давление прямо пропорционально среднеобъемной внутренней энергии. Среднеобъемное давление необходимо знать при расчетах газообмена помещения с внешней атмосферой, что будет показано в дальнейшем.

Степень нагретости газовой среды характеризуется в среднем отношением внутренней энергии этой среды к ее массе. Отношение этих физических величин можно представить с помощью формул (2.2), (2.7) и (2.15) в следующем виде:

(2.16)

Если правую и левую части равенства (2.16) поделить на изохорную теплоемкость, то получится следующее выражение:

(2.17)

Комплекс в левой части выражения (2.17) имеет размерность "Кельвин". Этот комплекс представляет собой параметр состояния рассматриваемой термодинамической системы, который называется среднемассовой температурой газовой среды, т.е.

(2.18)

С помощью выражения (2.18) можно преобразовать формулу (2. ] 7) и в результате получить следующее уравнение:

(2.19)

Вывод: Уравнение 2.19 является основным и связывает между собой три важных параметра состояния газовой среды в помещении при пожаре. По внешнему виду это уравнение такое же, как уравнение Клапейрона для локальных параметров состояния. В дальнейшем уравнение (2.19) для краткости будем называть усредненным уравнением состояния газовой среды, заполняющей помещение.

1.5 Дым и его влияние на термодинамические параметры среды

Газовая среда, заполняющая помещение при пожаре, содержит в себе мельчайшие твердые частицы. Следует отметить, что доля тепловой энергии, приходящейся на эти частицы, пренебрежимо мала по сравнению с внутренней энергией газовой среды, находящейся в помещении. Не существенным является также вклад этих частиц в суммарную массу среды, заполняющей помещение при пожаре. Поэтому можно не учитывать присутствие этих частиц при вычислениях таких параметров состояния среды, как среднеобъемная плотность, среднеобъемное давление и среднемассовая температура. Однако присутствие этих частиц сильно изменяет оптические свойства среды в помещении. В результате рассеяния энергии световых волн из-за многократного диффузного отражения от этих мельчайших частиц (их диаметр приблизительно равен 0,2-4 мкм) ухудшается видимость. Оптические свойства среды, находящейся в помещении, характеризуются среднеобъемной оптической плотностью дыма.

Среднеобъемная плотность (концентрация) дыма представляет собой отношение оптического количества дыма, находящегося в помещении, к объему помещения, т.е.

(2.20)

где S - оптическое количество дыма, Нп·м 2 ; µ m - среднеобъемная оптическая плотность дыма, Нп·м -1 . Здесь сокращением «Нп» обозначено слово "Непер". Оптическое количество дыма в помещении есть произведение средней концентрации твердых частиц на объем помещения и эффективное сечение экстинкции, т.е.

S = NVx , (2.21)

где N - средняя концентрация частиц, т.е. число частиц, приходящееся на единицу объема, м -3 ; χ - эффективное сечение экстинкции, м 2 . Чем выше оптическая плотность (концентрация) дыма, тем хуже видимость в помещении. Оптическая плотность дыма и дальность видимости связаны между собой следующим приближенным соотношением:

(2.22)

где l вид - дальность видимости, м.

К числу важнейших понятий, используемых в дальнейшем, относятся упомянутые ранее теплота сгорания, стехиометрические коэффициенты и дымообразующая способность горючих материалов. Последнее понятие требует некоторых пояснений.

Дымообразующая способность горючего материала есть оптическое количество дыма, образующегося при сгорании единицы массы горючего материала, т.е.

D = J χ , (2.23)

где D - дымообразующая способность ГМ, Нп·м 2 ·кг -1 ; J - число частиц, образующихся при сгорании единицы массы горючего материала, кг -1 ; χ - эффективное сечение экстинкции частиц, м 2 .

Лекция 2. Дифференциальные уравнения пожара

Уравнения пожара описывают в самом общем виде изменение среднеобъемных параметров состояния газовой среды в помещении в течение времени (в процессе развития пожара). Эти уравнения были сформулированы в 1976г. проф. Ю.А. Кошмаровым (статья "Развитие пожара в помещении" в научном сборнике ВНИИПО МВД СССР "Горение и проблемы тушения пожаров". М.: ВНИИПО МВД СССР, 1977).

Уравнения пожара являются обыкновенными дифференциальными уравнениями. Они вытекают, как и большинство уравнений математической физики, из фундаментальных законов природы - первого закона термодинамики для открытой термодинамической системы и закона сохранения массы. Подробный вывод этих уравнений приведен в учебнике Ю.А. Кошмарова и М.П. Башкирцева "Термодинамика и теплопередача в пожарном деле" (М., ВИПТШ МВД СССР, 1987). Ограничимся здесь кратким изложением рассуждений, используемых при выводе уравнений пожара.

Первое уравнение - уравнение материального баланса пожара в помещении - вытекает из закона сохранения массы. Применительно к газовой среде, заполняющей помещение, этот закон можно сформулировать так: изменение массы газовой среды в помещении за единицу времени равно алгебраической сумме потоков массы через границы рассматриваемой термодинамической системы. Под границей системы здесь подразумевается воображаемая контрольная поверхность, ограничивающая пространство, внутри которого заключена рассматриваемая газовая среда. На рис. 1.1 эта поверхность условно показана пунктирной линией. Часть этой поверхности совпадает с поверхностью ограждений (стены, пол, потолок). Там, где находятся проемы, эта поверхность является воображаемой. Объем пространства, заключенный внутри этой поверхности, называется свободным объемом помещения и обозначается буквой V . Введем следующие обозначения:

а) G B - расход поступающего воздуха из окружающей атмосферы в помещение, который имеет место в рассматриваемый момент времени процесса развития пожара, кг∙с -1 ;

б) G Г - расход газов, покидающих помещение через проемы в рассматриваемый момент времени, кг∙с -1 ;

в) ψ - скорость выгорания (скорость газификации) горючего материала в рассматриваемый момент времени, кг∙с -1 ;

г) ρ m V - масса газовой среды, заполняющей помещение в рассматриваемый момент времени, кг.

За малый промежуток времени, равный dx , будет иметь место малое изменение массы газовой среды. В то же время можно считать, что значения G Г , G B и ψ в течение этого малого промежутка времени остаются практически неизменными. С учетом вышесказанного уравнение материального баланса для газовой среды в помещении записывается следующим образом:

(2.24)

где левая часть уравнения есть изменение массы газовой среды за единицу времени в интервале, равном dτ . Правая часть есть алгебраическая сумма потоков массы.

Уравнение (2.24) называется уравнением материального баланса пожара.

Аналогичные рассуждения позволяют получить дифференциальные уравнения баланса массы кислорода, баланса продуктов горения и баланса оптического количества дыма. Уравнение баланса массы кислорода:

(2.25)

Уравнение баланса токсичного продукта горения:

(2.26)

Уравнение баланса оптического количества дыма:

(2.27)

В этих уравнениях использованы следующие обозначения: ρ 1 , - среднеобъемная парциальная плотность кислорода, кг · м -3 ; ρ 2 - среднеобъемная парциальная плотность токсичного продукта горения, кг · м -3 ; μ м - объемная оптическая концентрация дыма, Нп · м -1 .

В правой части уравнения (2.25) - уравнения баланса массы кислорода - использованы, кроме ранее указанных, следующие обозначения: х 1в - массовая доля кислорода в поступающем воздухе; средняя массовая доля кислорода в помещении; L 1 - стехиометрический коэффициент для кислорода (количество кислорода, необходимое для сгорания единицы массы горючего материала), кг∙кг -1 ; η - коэффициент полноты сгорания; n 3 , - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах от среднеобъемной концентрации кислорода.

В правой части уравнения (2.26) - уравнения баланса токсичного продукта горения - использованы, кроме ранее указанных, следующие обозначения: L 2 - стехиометрический коэффициент для продукта горения (количество продукта горения, образующегося при сгорании единицы массы горючего материала), кг∙кг -1 ; средняя массовая доля токсичного газа в помещении; п 2 - коэффициент, учитывающий отличие концентрации токсичного газа в уходящих газах от среднеобъемной концентрации этого газа.

В правой части уравнения (1.36) - уравнения баланса оптического количества дыма - использованы, кроме ранее указанных, следующие обозначения: n 3 - коэффициент, учитывающий отличие оптической концентрации дыма в уходящих газах от среднеобъемного значения оптической концентрации дыма; F w - площадь поверхности ограждений (потолка, пола, стен), м 2 ; к с - коэффициент седиментации частиц дыма на поверхностях ограждающих конструкций, Нп · с -1 . Коэффициент седиментации по физическому смыслу есть скорость осаждения частиц дыма.

На основе первого закона термодинамики выводится уравнение энергии пожара. Рассматриваемая термодинамическая система, т.е. газовая среда внутри контрольной поверхности, характеризуется тем, что она не совершает работы расширения. Кинетическая энергия видимого движения газовой среды в помещении пренебрежимо мала по сравнению с ее внутренней энергией. Потоки массы через некоторые участки контрольной поверхности (проемы) характеризуются тем, что в них удельная кинетическая энергия газа пренебрежимо мала по сравнению с удельной энтальпией.

С учетом всего сказанного получается следующее уравнение энергии пожара:

(2.28)

Левая часть этого уравнения есть скорость изменения внутренней тепловой энергии газовой среды в помещении за единицу времени в рассматриваемый малый промежуток времени dτ , т.е.

(2.29)

В правой части уравнения (2.28) первый член представляет собой количество тепла, поступающего за единицу времени в газовую среду в результате горения (скорость тепловыделения). Второй член есть поток энергии в помещение, поступающий вместе с продуктами газификации (пиролиз, испарение) горючего материала. Здесь величина i r - энтальпия этих продуктов. Третий член представляет собой сумму внутренней тепловой энергии поступающего за единицу времени воздуха и работы проталкивания, которую совершает внешняя атмосфера. Четвертый член есть сумма внутренней тепловой энергии, которую уносят за единицу времени уходящие газы, и работы выталкивания, которую совершает рассматриваемая термодинамическая система. Пятый член представляет собой тепловой поток, поглощаемый ограничивающими конструкциями и излучаемый через проемы.

Представленные выше пять дифференциальных уравнений содержат шесть неизвестных функций – p m (τ), p m (τ), Т m (τ), р 1 (τ), р 2 (τ) и  m (τ) . Эту систему уравнений дополняет алгебраическое уравнение - усредненное уравнение состояния (2.19).

Начальные значения для этих функций задаются условиями, которые имеют место в помещении перед началом пожара, т.е.

(2.30)

Представленная здесь система уравнений описывает свободное развитие пожара. Развитие пожара называют свободным, если не осуществляется тушение, т.е. если помещение не подаются огнетушащие вещества. Эффекты, обусловленные подачей огнетушащих веществ в объем помещения, можно учесть путем введения в дифференциальные уравнения дополнительных членов. Например, при тушении инертными газами (аргон, азот, диоксид углерода) уравнение материального баланса пожара записывается следующим образом:

(2.31)

где G o в - массовый расход подачи огнетушащего вещества, кг∙с -1 . Соответствующим образом изменяются в этом случае и остальные дифференциальные уравнения пожара.

Как уже говорилось, в уравнениях пожара искомыми (неизвестными) функциями являются среднеобъемные параметры газовой среды, а независимой переменной является время. Кроме этих переменных величин, уравнения содержат целый ряд других физических величин, которые можно разделить на две группы. К первой группе относятся величины, заданные условиями однозначности, которые представляют собой сведения о размерах помещения (объем V и поверхность ограждений F w ) и свойствах горючего материала (теплота сгорания Q р н , стехиометрические коэффициенты L 1 , L 2 , дымообразующая способность D , энтальпия продуктов горения i n . Ко второй группе относятся те величины, которые зависят, помимо всего прочего, от параметров состояния среды в помещении. К этим величинам относятся массовые расходы поступающего через проемы воздуха G B и уходящих через проемы газов G Г , тепловой поток, поглощаемый ограждающими конструкциями и излучаемый через проемы Q w , коэффициент полноты сгорания η , скорость тепловыделения ηQ p н ψ . Для вычисления значений физических величин, относящихся ко второй группе, необходимо располагать дополнительными уравнениями.

Конкретный вид дополнительных уравнений установлен путем привлечения сведений из теории конвективного и лучистого теплообмена, теории газообмена помещения с окружающей атмосферой через проемы из-за различия плотностей наружного воздуха и газовой среды внутри помещения, теории горения.

В заключение необходимо сделать некоторые замечания по поводу общих положений, касающихся сущности описания пожара на уровне осредненных параметров состояния.

В интегральной математической модели мы оперируем с интегральными характеристиками термодинамической системы. Этот подход не требует каких-либо допущений и оговорок о том, как распределены локальные значения термодинамических параметров состояния по объему помещения. Здесь не уместны оговорки такого, например, типа: "предположим, что температурное поле является однородным", или часто используемое выражение о "размазанности" того или иного параметра состояния газовой среды.

Естественным является вопрос о том, как определить значение того или иного термодинамического параметра состояния в заданной точке объема помещения, если будет известно среднеобъемное значение. К этому вопросу мы вернемся в параграфах, посвященных интегральной математической модели пожара.

Здесь лишь отметим, что процесс развития пожара в помещении можно расчленить на ряд характерных временных этапов. Каждому этапу присущи характерные законы распределения локальных термодинамических параметров состояния внутри помещения. Это обстоятельство используется для ответа на поставленный здесь вопрос.

Уравнения пожара описывают в самом общем виде изменение среднеобъемных параметров состояния газовой среды в помещении в течение времени (в процессе развития пожара). Эти уравнения были сформулированы в 1976г. проф. Ю.А. Кошмаровым (статья "Развитие пожара в помещении" в научном сборнике ВНИИПО МВД СССР "Горение и проблемы тушения пожаров". М.: ВНИИПО МВД СССР, 1977).

Уравнения пожара являются обыкновенными дифференциальными уравнениями. Они вытекают, как и большинство уравнений математической физики, из фундаментальных законов природы - первого закона термодинамики для открытой термодинамической системы и закона сохранения массы. Подробный вывод этих уравнений приведен в учебнике Ю.А. Кошмарова и М.П. Башкирцева "Термодинамика и теплопередача в пожарном деле" (М., ВИПТШ МВД СССР, 1987). Ограничимся здесь кратким изложением рассуждений, используемых при выводе уравнений пожара.

Первое уравнение - уравнение материального баланса пожара в помещении - вытекает из закона сохранения массы. Применительно к газовой среде, заполняющей помещение, этот закон можно сформулировать так: изменение массы газовой среды в помещении за единицу времени равно алгебраической сумме потоков массы через границы рассматриваемой термодинамической системы. Под границей системы здесь подразумевается воображаемая контрольная поверхность, ограничивающая пространство, внутри которого заключена рассматриваемая газовая среда. На рис. 1.1 эта поверхность условно показана пунктирной линией. Часть этой поверхности совпадает с поверхностью ограждений (стены, пол, потолок). Там, где находятся проемы, эта поверхность является воображаемой. Объем пространства, заключенный внутри этой поверхности, называется свободным объемом помещения и обозначается буквой V. Введем следующие обозначения:

а) G B - расход поступающего воздуха из окружающей атмосферы в помещение, который имеет место в рассматриваемый момент времени процесса развития пожара, кг∙с -1 ;

б) G Г - расход газов, покидающих помещение через проемы в рассматриваемый момент времени, кг∙с -1 ;

в) ψ - скорость выгорания (скорость газификации) горючего материала в рассматриваемый момент времени, кг∙с -1 ;

г) ρ m V - масса газовой среды, заполняющей помещение в рассматриваемый момент времени, кг.

За малый промежуток времени, равный dx , будет иметь место малое изменение массы газовой среды. В то же время можно считать, что значения G Г , G B и ψ в течение этого малого промежутка времени остаются практически неизменными. С учетом вышесказанного уравнение материального баланса для газовой среды в помещении записывается следующим образом:



где левая часть уравнения есть изменение массы газовой среды за единицу времени в интервале, равном . Правая часть есть алгебраическая сумма потоков массы.

Уравнение (2.24) называется уравнением материального баланса пожара.

Аналогичные рассуждения позволяют получить дифференциальные уравнения баланса массы кислорода, баланса продуктов горения и баланса оптического количества дыма. Уравнение баланса массы кислорода:

Уравнение баланса токсичного продукта горения:

Уравнение баланса оптического количества дыма:

В этих уравнениях использованы следующие обозначения: ρ 1 , - среднеобъемная парциальная плотность кислорода, кг·м -3 ; ρ 2 - среднеобъемная парциальная плотность токсичного продукта горения, кг·м -3 ; μ м - объемная оптическая концентрация дыма, Нп·м -1 .

В правой части уравнения (2.25) - уравнения баланса массы кислорода - использованы, кроме ранее указанных, следующие обозначения: х 1в - массовая доля кислорода в поступающем воздухе; средняя массовая доля кислорода в помещении; L 1 - стехиометрический коэффициент для кислорода (количество кислорода, необходимое для сгорания единицы массы горючего материала), кг∙кг -1 ; η - коэффициент полноты сгорания; n 3 , - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах от среднеобъемной концентрации кислорода.

В правой части уравнения (2.26) - уравнения баланса токсичного продукта горения - использованы, кроме ранее указанных, следующие обозначения: L 2 - стехиометрический коэффициент для продукта горения (количество продукта горения, образующегося при сгорании единицы массы горючего материала), кг∙кг -1 ; средняя массовая доля токсичного газа в помещении; п 2 - коэффициент, учитывающий отличие концентрации токсичного газа в уходящих газах от среднеобъемной концентрации этого газа.

В правой части уравнения (1.36) - уравнения баланса оптического количества дыма - использованы, кроме ранее указанных, следующие обозначения: n 3 - коэффициент, учитывающий отличие оптической концентрации дыма в уходящих газах от среднеобъемного значения оптической концентрации дыма; F w - площадь поверхности ограждений (потолка, пола, стен), м 2 ; к с - коэффициент седиментации частиц дыма на поверхностях ограждающих конструкций, Нп·с -1 . Коэффициент седиментации по физическому смыслу есть скорость осаждения частиц дыма.

На основе первого закона термодинамики выводится уравнение энергии пожара. Рассматриваемая термодинамическая система, т.е. газовая среда внутри контрольной поверхности, характеризуется тем, что она не совершает работы расширения. Кинетическая энергия видимого движения газовой среды в помещении пренебрежимо мала по сравнению с ее внутренней энергией. Потоки массы через некоторые участки контрольной поверхности (проемы) характеризуются тем, что в них удельная кинетическая энергия газа пренебрежимо мала по сравнению с удельной энтальпией.

С учетом всего сказанного получается следующее уравнение энергии пожара:

Левая часть этого уравнения есть скорость изменения внутренней тепловой энергии газовой среды в помещении за единицу времени в рассматриваемый малый промежуток времени dτ, т.е.

В правой части уравнения (2.28) первый член представляет собой количество тепла, поступающего за единицу времени в газовую среду в результате горения (скорость тепловыделения). Второй член есть поток энергии в помещение, поступающий вместе с продуктами газификации (пиролиз, испарение) горючего материала. Здесь величина i r - энтальпия этих продуктов. Третий член представляет собой сумму внутренней тепловой энергии поступающего за единицу времени воздуха и работы проталкивания, которую совершает внешняя атмосфера. Четвертый член есть сумма внутренней тепловой энергии, которую уносят за единицу времени уходящие газы, и работы выталкивания, которую совершает рассматриваемая термодинамическая система. Пятый член представляет собой тепловой поток, поглощаемый ограничивающими конструкциями и излучаемый через проемы.

Представленные выше пять дифференциальных уравнений содержат шесть неизвестных функций – p m (τ), p m (τ), Т m (τ), р 1 (τ), р 2 (τ) и m m (τ) . Эту систему уравнений дополняет алгебраическое уравнение - усредненное уравнение состояния (2.19).

Начальные значения для этих функций задаются условиями, которые имеют место в помещении перед началом пожара, т.е.

Представленная здесь система уравнений описывает свободное развитие пожара. Развитие пожара называют свободным, если не осуществляется тушение, т.е. если помещение не подаются огнетушащие вещества. Эффекты, обусловленные подачей огнетушащих веществ в объем помещения, можно учесть путем введения в дифференциальные уравнения дополнительных членов. Например, при тушении инертными газами (аргон, азот, диоксид углерода) уравнение материального баланса пожара записывается следующим образом:

где G o в - массовый расход подачи огнетушащего вещества, кг∙с -1 . Соответствующим образом изменяются в этом случае и остальные дифференциальные уравнения пожара.

Как уже говорилось, в уравнениях пожара искомыми (неизвестными) функциями являются среднеобъемные параметры газовой среды, а независимой переменной является время. Кроме этих переменных величин, уравнения содержат целый ряд других физических величин, которые можно разделить на две группы. К первой группе относятся величины, заданные условиями однозначности, которые представляют собой сведения о размерах помещения (объем V и поверхность ограждений F w) и свойствах горючего материала (теплота сгорания Q р н, стехиометрические коэффициенты L 1 , L 2 , дымообразующая способность D, энтальпия продуктов горения i n . Ко второй группе относятся те величины, которые зависят, помимо всего прочего, от параметров состояния среды в помещении. К этим величинам относятся массовые расходы поступающего через проемы воздуха G B и уходящих через проемы газов G Г , тепловой поток, поглощаемый ограждающими конструкциями и излучаемый через проемы Q w , коэффициент полноты сгорания η, скорость тепловыделения ηQ p н ψ. Для вычисления значений физических величин, относящихся ко второй группе, необходимо располагать дополнительными уравнениями.

Конкретный вид дополнительных уравнений установлен путем привлечения сведений из теории конвективного и лучистого теплообмена, теории газообмена помещения с окружающей атмосферой через проемы из-за различия плотностей наружного воздуха и газовой среды внутри помещения, теории горения.

В заключение необходимо сделать некоторые замечания по поводу общих положений, касающихся сущности описания пожара на уровне осредненных параметров состояния.

В интегральной математической модели мы оперируем с интегральными характеристиками термодинамической системы. Этот подход не требует каких-либо допущений и оговорок о том, как распределены локальные значения термодинамических параметров состояния по объему помещения. Здесь не уместны оговорки такого, например, типа: "предположим, что температурное поле является однородным", или часто используемое выражение о "размазанности" того или иного параметра состояния газовой среды.

Естественным является вопрос о том, как определить значение того или иного термодинамического параметра состояния в заданной точке объема помещения, если будет известно среднеобъемное значение. К этому вопросу мы вернемся в параграфах, посвященных интегральной математической модели пожара.

Здесь лишь отметим, что процесс развития пожара в помещении можно расчленить на ряд характерных временных этапов. Каждому этапу присущи характерные законы распределения локальных термодинамических параметров состояния внутри помещения. Это обстоятельство используется для ответа на поставленный здесь вопрос.

Интегральная модель пожара позволяет получить информацию, т.е. сделать прогноз, о средних значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять средние (т.е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма и т.д.

Газовая среда, заполняющая помещение с проемами (окна, двери и т.п.), как объект исследования есть открытая термодинамическая система.

Эта система взаимодействует с внешней средой путем тепло - и массообмена. Будем считать, что в начальной стадии процесса развития пожара через одни проемы выталкиваются из помещения нагретые газы, а через другие поступает холодный воздух (рис. 1.1). Количество вещества в рассматриваемой открытой термодинамической системе в течение времени изменяется. Термодинамическая система совершает работу, выталкивая нагретые газы во внешнюю атмосферу. Поступление холодного воздуха обусловлено работой проникновения, которую совершает внешняя среда. Эта термодинамическая система взаимодействует также с ограждающими конструкциями путем теплообмена. Кроме того, в эту систему с поверхности горящего материала поступает вещество в виде газообразных продуктов горения. Состояние рассматриваемой термодинамической системы изменяется в результате взаимодействия с окружающей средой. В интегральном методе описания процесса изменения состояния рассматриваемой термодинамической системы, сделаны два допущения.

Рис. 1.1. Схема интегральной модели пожара в помещении

Во-первых, всегда с большой точностью можно считать, что газовая среда внутри помещения при пожаре есть смесь идеальных газов.

Во-вторых, в каждой точке пространства внутри помещения в любой момент времени реализуется локальное равновесие. Это означает, что локальные значения основных термодинамических параметров состояния (плотность, давление, температура) связаны между собой уравнением Клапейрона, т.е.

P = rRT,

P -локальное давление, Н·м 2 ;

r - локальная плотность, кг·м -3 ;

R -удельная газовая постоянная, Дж·(кг·К) -1 ;

Т -локальная температура, К.

Будем считать, что во время пожара поля локальных термодинамических параметров состояния являются нестационарными и неоднородными. Расчет этих полей представляет собой чрезвычайно сложную математическую задачу. Интегральный метод описания состояния среды в помещении позволяет не рассматривать эту задачу.

В интегральном методе описания состояния термодинамической системы, коей является газовая среда в помещении, используются «интегральные» параметры состояния - такие, как масса всей газовой среды и ее внутренняя тепловая энергия. Отношение этих двух интегральных параметров позволяет оценивать в среднем степень нагретости газовой среды. В процессе развития пожара значения, указанных интегральных параметров состояния, изменяются.



Особенностью рассматриваемой термодинамической системы (т.е. газовой среды в помещении) является то, что ее объем (т.е. пространственная конфигурация) в процессе развития пожара практически не изменяется. В связи с этим вместо вышеуказанных интегральных параметров состояния целесообразно использовать при исследовании процесса изменения состояния термодинамической системы среднеобъемные параметры - среднеобъемную плотность газовой среды и среднеобъемную (удельную) внутреннюю энергию.

Среднеобъемная плотность газовой среды в помещении представляет собой отношение массы газа, заполняющего помещение, к объему помещения, т.е.

P m = M /V ,

М - масса газа, заполняющего помещение, кг;

V - свободный объем помещения, м 3 ;

Следует отметить, что

С формальных позиций среднеобъемная внутренняя энергия газовой среды есть результат осреднения по объему всех значений локальной плотности, т.е.

Газовая среда в помещении представляет собой смесь кислорода, азота и продуктов горения. В процессе развития пожара количественное соотношение между компонентами смеси изменяется. В интегральном методе описания процесса изменения массы i -гокомпонента смеси в течение времени используется параметр, называемый среднеобъемной парциальной плотностью i -го компонента смеси.

Среднеобъемная парциальная плотность i -гокомпонента представляет собой отношение массы i-го компонента смеси (например О 2), содержащейся в объеме помещения, к объему помещения, т.е.

M , - масса i -го компонента, находящегося в помещении, кг.

Отметим, что с формальной точки зрения среднеобъемная парциальная плотность i-го компонента есть результат осреднения по объему помещения всех значений локальной парциальной плотности этого компонента, т.е.

ρ , - локальное значение парциальной плотности i -го компонента, кг·м -3 .

Среднеобъемная (удельная) внутренняя энергия представляет собой отношение внутренней тепловой энергии всего газа, заполняющего помещение, к объему помещения, т.е.

u – внутренняя энергия всей газовой среды, заполняющей помещение.

С формальных позиций среднеобъемная внутренняя энергия газовой среды есть результат осреднения по объему всех значений локальной удельной (объемной) внутренней энергии, т.е.

Локальные значения удельной объемной внутренней энергии и удельной массовой внутренней энергии связаны между собой простым соотношением, которое имеет следующий вид:

u - локальное значение удельной массовой внутренней энергии газа, Дж·кг -1 .

Отметим здесь, что между локальным значением удельной массовой внутренней энергии и локальной температурой идеального газа существует простая взаимосвязь, а именно

C V - изохорная теплоемкость газа, Дж·кг -1 ·К -1 .

В интегральном методе описания процесса изменения состояния термодинамической системы (т.е. газовой среды в помещении) вместо среднеобъемной внутренней энергии используется параметр состояния, называемый среднеобъемным давлением. Эти два параметра в формальном отношении являются взаимозаменяемыми. Формулу можно преобразовать с помощью выражений

Если теперь воспользоваться уравнением Клапейрона, то можно преобразовать и получить следующее выражение:

P - локальное давление, Н·м -2 ;

k - отношение изобарной и изохорной теплоемкостей идеального газа (показатель адиабаты).

С достаточной для практики точностью можно считать, что показатель адиабаты во всех точках внутри помещения есть одна и та же постоянная величина. С учетом этого замечания формулу можно преобразовать:

Выражение в прямоугольных скобках представляет собой операцию осреднения всех локальных значений давления по объему помещения. Результат этого осреднения называют среднеобъемным давлением, т.е.

P m - среднеобъемное давление, Н·м -2 .

Сравнивая выражения, получим следующее соотношение между среднеобъемной внутренней энергией и среднеобъемным давлением:

Из последней формулы следует, что среднеобъемное давление прямо пропорционально среднеобъемной внутренней энергии. Среднеобъемное давление необходимо знать при расчетах газообмена помещения с внешней атмосферой, что будет показано в дальнейшем.

Степень нагретости газовой среды характеризуется в среднем отношением внутренней энергии этой среды к ее массе. Отношение этих физических величин можно представить с помощью формул в следующем виде:

Если правую и левую части равенства поделить на изохорную теплоемкость, то получится следующее выражение:

Комплекс в левой части выражения имеет размерность «Кельвин». Этот комплекс представляет собой параметр состояния рассматриваемой термодинамической системы, который называется среднемассовой температурой газовой среды, т.е.

С помощью выражения можно преобразовать формулу и в результате получить следующее уравнение:

Это уравнение связывает между собой три параметра состояния. По внешнему виду это уравнение такое же, как уравнение Клапейрона для локальных параметров состояния. В дальнейшем уравнение для краткости будем называть усредненным уравнением состояния газовой среды, заполняющей помещение.

Представляется интересным вопрос о том, как выражается средне-массовая температура, через локальные значения температур. Этот вопрос возникает при постановке натурных экспериментов. Ограничимся здесь анализом этого вопроса применительно к пожарам, протекающим без взрывов, сопровождающихся ударными волнами. Особенностью таких пожаров является то обстоятельство, что значения локальных абсолютных давлений во всех точках внутри помещения отличаются очень незначительно от среднеобъемного давления на всех этапах развития пожара. Другими словами, при таких пожарах отношение локального абсолютного давления в каждой точке внутри помещения к среднеобъемному давлению почти не отличается от единицы.

Чтобы получить формулу, с помощью которой можно вычислить среднемассовую температуру при известном распределении локальных температур по объему помещения, воспользуемся усредненным уравнением состояния, которое преобразуем с помощью уравнения Клапейрона

T - локальная температура, К.

С учетом того, что преобразуется в следующее:

Формула позволяет вычислить среднемассовую температуру, если известно распределение локальных температур по объему помещения (например, если в натурном эксперименте измерены локальные температуры в достаточно большом количестве точек внутри помещения).

С формальных позиций формулу можно рассматривать как один из методов осреднения всех значений локальных температур. Наряду с этим в практике экспериментальных исследований пожаров используется метод осреднения всех значений локальных температур с помощью следующей формулы:

- среднеобъемная температура среды, К.

Среднеобъемная температура и среднемассовая температура при однородном температурном поле равны друг другу. При неоднородном температурном поле эти температуры, вообще говоря, неодинаковы. Различие этих температур тем больше, чем больше неоднородность температурного поля.

Характер развития пожара в помещении зависит от размеров проемов и их расположения, вида и количества горючего материала, теплофизических свойств ограждающих конструкций и других факторов. Пожары в помещениях можно разделить с позиций термогазодинамического анализа на группы (классы). Пожары, входящие в одну группу, описываются одинаковыми по форме размерными уравнениями и условиями однозначности. В частности, пожары можно относить к одной группе лишь в том случае, если они протекают в геометрически подобных помещениях. Условия подобия можно установить при помощи хорошо разработанных в теплофизике методов. Одним из методов анализа подобия является метод приведения уравнений пожара к безразмерному виду.

Аналитическое решение системы дифференциальных уравнений, описывающих развитие пожара, может быть получено лишь для частных случаев. В общем случае система решается численными методами.

Перед тем как приступить к численному решению системы уравнений, описывающих пожар при указанных выше условиях, целесообразно привести уравнения пожара к безразмерному виду.

Дифференциальные уравнения пожара, входящие в интегральную модель, были сформулированы в 1976 году профессором Ю.А. Кошмаровым. Позднее, в 1987 году, уравнения Ю.А. Кошмарова были дополнены его учеником Ю.С. Зотовым уравнением, описывающим в общем виде изменение средней оптической концентрации дыма с течением времени.

Уравнения пожара вытекают, как и большинство уравнений математической физики, из фундаментальных законов природы - первого закона термодинамики для открытой термодинамической системы и закона сохранения массы.

Первое уравнение - уравнение материального баланса пожара в помещении - вытекает из закона сохранения массы. Применительно к газовой среде, заполняющей помещение, этот закон можно сформулировать так: изменение массы газовой среды в помещении за единицу времени равно алгебраической сумме потоков массы через границы рассматриваемой термодинамической системы. Внутренний объем пространства горящего помещения называется свободным объемом помещения и обозначается буквой V ; G в - расход поступающего воздуха из ограждающей атмосферы в помещение, который имеет место в рассматриваемый момент времени процесса развития пожара, кг/с; G г - расход газов, покидающих помещения через проемы, в рассматриваемый момент времени, кг/с; y - скорость выгорания (скорость газификации) горючего материала в рассматриваемый момент времени, кг/с; r m V - масса газовой среды, заполняющей помещение в рассматриваемый момент времени, кг.

За малый промежуток времени, равный dt , будет иметь место малое изменение массы газовой среды. В тоже время можно считать, что значения G г , G в и y в течении этого малого промежутка времени остаются практически неизменными. Тогда уравнение материального баланса для газовой среды в помещение записывается следующим образом

где левая часть уравнения есть изменение массы газовой среды за единицу времени на интервале, равном, dt . Правая часть есть алгебраическая сумма потоков массы.

Аналогично можно получить дифференциальные уравнения баланса массы кислорода, баланса продуктов горения и баланса оптического количества дыма.

Уравнение баланса массы кислорода:

Уравнение баланса токсичного продукта горения:

Уравнение баланса оптического количества дыма:

где r 1 - среднеобъемная парциальная плотность кислорода, кг×м -3 ;

r 2 - среднеобъемная парциальная плотность токсичного продукта горения, кг×м -3 ;

m m - среднеобъемная оптическая концентрация дыма, Нп×м -1 ;

x 1в - массовая доля кислорода в поступающем воздухе (x 1в = 0,27);

Средняя массовая доля кислорода в помещении;

L 1 - стехиометрический коэффициент для кислорода (количество кислорода, необходимое для сгорания единицы массы горючего материала), кг/кг;

h - коэффициент полноты сгорания;

n 1 - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах от среднеобъемной концентрации кислорода;

L 2 - стехиометрический коэффициент для продукта горения (количество продукта горения, образующегося при сгорании единицы массы горючего материала), кг/кг;

Средняя массовая доля токсичного газа в помещении;

n 2 - коэффициент, учитывающий отличие концентрации токсичного газа в уходящих газах от среднеобъемной концентрации этого газа;

n 3 - коэффициент, учитывающий отличие оптической концентрации дыма в уходящих газах от среднеобъемного значения оптической концентрации дыма;

F w - площадь поверхности ограждений (потолка, пола, стен), м 2 ;

k c - коэффициент седиментации частиц дыма на поверхностях ограждающих конструкции, Нп×с -1 . Коэффициент седиментации по физическому смыслу есть скорость осаждения частиц дыма.

На основе первого закона термодинамики можно вывести уравнение энергии пожара.

Рассматриваемая термодинамическая система, т.е. газовая среда внутри контрольной поверхности, характеризуется тем, что она не совершает работы расширения или другой механической работы. Кинетическая энергия видимого движения газовой среды в помещении пренебрежимо мала по сравнению с ее внутренней энергией. Потоки массы через некоторые участки контрольной поверхности (проемы) характеризуются тем, что в них удельная кинетическая энергия газа пренебрежимо мала по сравнению с удельной энтальпией.

Представленная здесь система уравнений описывает свободное развитие пожара.

Интегральная математическая модель пожара представляет собой систему обыкновенных дифференциальных уравнений, описывающих изменение среднеобъёмных параметров состояния газовой среды в помещении в процессе развития пожара. Они следуют из фундаментальных законов природы? первого закона термодинамики для открытой термодинамической системы и закона сохранения массы. Впервые интегральная модель была сформулирована профессором Ю.А. Кошмаровым в 1976 году.

Более подробно интегральная модель пожара описана в приложении 6 к приказу МЧС России от 30.06.2009 №382.

Ограничения интегральной модели

Интегральная модель применима в случае, когда состояние газовой среды с достаточной степенью достоверности можно считать одинаковым по всему объему помещения. Такое допущение справедливо, если модель содержит:

достаточно большой источник пожара;

относительно небольшой объем помещений;

хороший газообмен внутри помещений, обеспечивающий равномерное перемешивание продуктов горения.

Таким образом, интегральную модель можно применять при следующих условиях:

для зданий, содержащих развитую систему помещений малого объема простой геометрической конфигурации;

для помещений, где характерный размер очага пожара соизмерим с характерными размерами помещения и размеры помещения соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз);

для предварительных расчетов с целью выявления наиболее опасного сценария пожара.

Если один из линейных размеров помещения более чем в пять раз превышает хотя бы один из двух других линейных размеров, необходимо это помещение делить на участки, размеры которых соизмеримы между собой, и рассматривать участки как отдельные помещения, сообщающиеся проемами, площадь которых равна площади сечения на границе участков. Использование аналогичной процедуры в случае, когда два линейных размера превышают третий более чем в 5 раз, не допускается.

Зонная модель позволяет получить информацию о размерах характерных зон, возникающих при пожаре в помещениях и средних параметров состояния среды в этих зонах.

Зонные математические модели в основном используются для исследования динамики опасных факторов пожара в начальной стадии пожара. В начальной стадии распределение параметров состояния газовой среды по объему помещения характеризуется большой неоднородностью (неравномерностью). В этот период (отрезок) времени пространство внутри помещения можно условно поделить на ряд характерных зон с существенно различающимися температурами и составами газовых сред. Границы этих зон по мере развития пожара не остаются неизменными и неподвижными. В течение времени геометрическая конфигурация зон меняется и сглаживается контрастное различие параметров состояния газа в этих зонах. В принципе, пространство внутри помещения можно разбить на любое число зон. В этой лекции рассмотрим простейшую зонную модель пожара, которая применима при условиях, когда размеры очага горения значительно меньше размеров помещения. Процесс развития пожара можно представить следующим образом. После воспламенения горючих веществ образующиеся газообразные продукты устремляются вверх, образуя над очагом горения конвективную струю. Достигнув потолка помещения, эта струя растекается, образуя припотолочный слой задымленного газа. В течение времени толщина этого слоя увеличивается. 1. Постановка задачи о зонном моделировании. В соответствии с вышесказанным в объеме помещения можно выделить три характерные зоны: конвективную колонку над очагом пожара, припотолочный слой нагретого газа и воздушную зону с практически неизменными параметрами состояния, равными своим начальным значениям. Математическая модель пожара, базирующаяся на разбиении пространства на характерные области, получила название трехзонной модели.

В дальнейшем ограничимся рассмотрением первой фазы начальной стадии пожара. Под понятием "первая фаза начальной стадии пожара" подразумевается отрезок времени, в течение которого нижняя граница припотолочного слоя, непрерывно опускаясь, достигает верхнего края дверного проема. При первой фазе начальной стадии пожара нагретые газы лишь накапливаются в припотолочной зоне. При второй фазе нижняя граница II зоны расположена ниже верхнего края дверного проема. С наступлением второй фазы начинается процесс истечения нагретых газов из помещения через дверной проем. До наступления этой фазы имеет место лишь вытеснение (через дверной проем) холодного воздуха из III зоны.

Полевая (дифференциальная) модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения.

Полевая дифференциальная модель. Интегральная модель пожара позволяет получить информацию о средних значениях параметров среды в помещении для любого момента развития пожара. Зонная модель позволяет получить представление о размерах характерных зон, возникающих при пожаре в помещении, а также о средних параметрах состояния среды внутри этих зон. И наконец, полевая дифференциальная модель позволяет рассчитать для любого момента развития пожара значение всех локальных параметров состояния в любой точке пространства помещения. Все три модели в математическом отношении характеризуются различным уровнем сложности. Наиболее просто реализуемой является интегральная модель, она же является и наименее точной. Наиболее перспективной, с точки зрения, практического применения является полевая модель горения.

Полевые модели основываются на системе дифференциальных уравнений в частных производных. Результатами решения данной системы уравнений являются поля распределения температур, скоростей, концентраций компонентов газовой среды в каждый момент времени. Программа FDS (Fire Dynamics Simulator) реализует вычислительную гидродинамическую модель (CFD) тепломассопереноса при горении. FDS решает уравнения Навье-Стокса для низкоскоростных температурно-зависимых потоков. Базовым алгоритмом является определенная схема использования метода предиктора-корректора второго порядка точности по координатам и времени.

Турбулентность выполняется с помощью модели Смагоринского «Масштабное моделирование вихрей». Главным образом нас интересует начальный момент времени пожара, когда срабатывание автоматической пожарной сигнализации еще может привести к выполнению системой своих целевых функций (эвакуация людей, эффективное пожаротушение). Время это относительно мало, и в этот промежуток времени пожар имеет некоторые особенности, позволяющие еще более упростить математическую модель. Основной особенностью данного процесса является отсутствие газообмена помещения с окружающей средой.

Поступление воздуха в помещение из окружающей среды отсутствует, и динамика возгорания диктуется исключительно пожарной нагрузкой. Поэтому полевая модель пожара, рассматриваемая в данной работе, носит ограниченный характер по времени и справедлива исключительно в начальный момент развития пожара, пока отсутствует поступление воздуха в помещение,

Перечисленные модели отличаются друг от друга объемом той информации, которую они могут дать о состоянии газовой среды в помещении и взаимодействующих с нею конструкций на разных этапах пожара.

В математическом отношении три вышеуказанных вида моделей пожара характеризуются разным уровнем сложности. Наиболее сложной в математическом отношении является полевая модель.

опасный пожар прогнозирование моделирование



Понравилась статья? Поделитесь ей
Наверх