Техническая диагностика теория контроля пригодности объекта. Основные понятия и термины технической диагностики. Задачи технической диагностики

Техническая диагностика . Отрасль знаний, изучающая техническое состояние составных частей машин и разрабатывающая методы и средства его определения.

В технической диагностике различают структурный и диагностический параметры состояния.

Структурный параметр непосредственно характеризует техническое состояние объекта (например, мощность, зазор или натяг в сопряжении, износ и др.).

Диагностический параметр характеризует техническое состояние объекта косвенно (например, вибрация, температура воды, давление масла и др.). Так, вибрация дизеля увеличивается, а давление масла снижается по мере износа коренных и шатунных подшипников коленчатого вала. Прорыв газов в картер двигателя и угар картерного масла увеличиваются по мере износа деталей цилиндропоршневой группы (цилиндра, поршня, поршневых колец). В этих примерах уровень вибрации дизеля, давление масла в магистрали, количество прорывающихся газов в картер и угар масла - диагностические параметры. Измеряя их значения, можно оценить зазоры в подшипниках коленчатого вала и износ деталей цилиндропоршневой группы, которые выступают в роли структурных параметров. В результате ставится диагноз, т. е. заключение о техническом состоянии конкретных сопряжений или сборочных единиц двигателя.

Комфорт водителя во многом зависит от сидения на котором он работает. Если у вас старая техника то можно легко заменить сидение на более комфортное, которое можно выбрать на сайте http://глобалрес.рф/sidene-pogruzchika/ .

Техническое диагностирование . Процесс определения технического состояния объекта с определенной точностью (объекты диагностирования - машина или ее составная часть), т. е. процесс, включающий измерения, анализ результатов измерений, постановку диагноза и принятие решения - диагностирование.

Номинальное значение диагностического параметра служит началом отсчета отклонений и определяется его функциональным назначением. Номинальные значения параметров отмечают у новых и капитально отремонтированных составных частей машин.

Допускаемое значение диагностического параметра гранично, при нем составная часть машины допускается к использованию после контроля без проведения операций технического обслуживания или ремонта. При этом обеспечивается (с некоторой вероятностью) безотказная работа составной части до очередного контроля.

Нормальное значение - любое значение диагностического параметра в интервале от номинального до допускаемого.

Предельное значение диагностического параметра может быть наибольшим (или наименьшим) значением, которое определяет работоспособность составной части машины. Дальнейшее использование составной части без проведения ремонта недопустимо или нецелесообразно вследствие резкого увеличения интенсивности изнашивания деталей, или нарушения требований безопасности, либо из-за снижения экономичности.

Например, номинальное значение расхода картерных газов при работе дизеля ЯМЗ-240Б на холостом ходу составляет 90 л/мин, допускаемое 184 л/мин и предельное 250 л/мин. При диагностировании перед ремонтом дизеля может быть сделано заключение о замене деталей цилиндропоршневой группы в том случае, если фактический расход превышает 184 л/мин, т. е. больше допускаемого. При диагностировании во время проведения технического обслуживания может быть принято решение о прекращении эксплуатации дизеля и отправке в ремонт, если фактический расход картерных газов превышает предельное значение, т. е. больше 250 л/мин.

Наряду с диагностическими параметрами состояния используются также диагностические признаки, которые позволяют дать качественную оценку, т. е. «исправен» или «неисправен», «годен» или «негоден» контролируемый объект. Диагностические признаки не имеют количественных оценок. Например, дымность выпускных газов позволяет оценить качество и полноту сгорания топлива, что, в свою очередь, зависит от качества распыла, угла опережения впрыскивания, значения цикловой подачи и. других факторов. В то же время дымность выпускных газов не измеряется количественно, заключение о дымности субъективно. Диагностическими признаками могут быть также буксование муфты сцепления, нагрев корпусов коробок передач и задних мостов, «жесткая» работа дизеля и др. Их проявление служит основанием для более углубленного диагностирования составной части машины.

Структурные и диагностические параметры, а также признаки технического состояния для тракторов и их составных частей установлены ГОСТ 20760-75 «Техническая диагностика. Тракторы. Параметры и качественные признаки технического состояния».

Как и любая наука, техническая диагностика оперирует специфическим набором терминов и определений, которые установлены ГОСТ 20911-89 «Техническая диагностика. Термины и определения». Ниже приведены некоторые из них.

Техническая диагностика - область знаний, охватывающая теорию, методы и средства определения технического состояния объектов.

Техническое диагностирование - определение технического состояния. Задачами технического диагностирования являются:

  • - контроль технического состояния;
  • - поиск места и определение причин отказа (неисправности);
  • - прогнозирование технического состояния.

Иногда допускается некорректное применение этих двух терминов в плане отождествления. Поэтому следует четко определиться, что диагностика - это наука, диагностирование - это процесс.

Техническое состояние объекта - состояние, которое характеризуется в определенный момент времени при определенных условиях внешней среды значениями параметров, установленных технической документацией.

Следует обратить внимание на то, что условия внешней среды должны быть в установленных технической документацией пределах. Например, такой параметр дизель-генераторной установки (ДГУ) тепловоза, как удельный расход топлива, подвержен влиянию барометрического давления, температуры окружающей среды и т.д. Если измеренный удельный расход топлива при испытаниях не привести к нормальным условиям, то в результате можно сделать ошибочный вывод о техническом состоянии ДГУ тепловоза.

Объект технического диагностирования (контроля технического состояния) - изделие и (или) его составные части, подлежащие (подвергаемые) диагностированию (контролю).

Контроль технического состояния - проверка соответствия значений параметров объекта требованиям технической документации и определение на этой основе одного из заданных видов технического состояния в данный момент времени. Видами технического состояния являются, например, исправное, работоспособное, неисправное, неработоспособное и т.п. в зависимости от значений параметров в данный момент времени.

Диагностический (контролируемый) параметр - параметр объекта, используемый при его диагностировании (контроле).

Прогнозирование технического состояния - определение технического состояния объекта с заданной вероятностью на предстоящий интервал времени.

Рабочее техническое диагностирование - диагностирование, при котором на объект подаются рабочие воздействия.

Тестовое техническое диагностирование - диагностирование, при котором на объект подаются тестовые воздействия.

Средства технического диагностирования (контроля технического состояния) - аппаратура и программы, с помощью которых осуществляется диагностирование (контроль).

Система технического диагностирования - совокупность средств, объекта и исполнителей, необходимая для проведения диагностирования (контроля) по правилам, установленным технической документацией.

Алгоритм технического диагностирования (контроля технического состояния) - совокупность предписаний, определяющих последовательность действий при проведении диагностирования (контроля).

Диагностическая модель - формализованное описание объекта, необходимое для решения задач диагностирования.

Встроенное средство технического диагностирования (контроля технического состояния) - средство диагностирования (контроля), являющееся составной частью объекта.

Внешнее средство технического диагностирования (контроля технического состояния) - средство диагностирования (контроля), выполненное конструктивно отдельно от объекта.

Специализированное средство технического диагностирования (контроля технического состояния) - средство, предназначенное для диагностирования (контроля) одного объекта или группы однотипных объектов.

Универсальное средство технического диагностирования (контроля технического состояния) - средство, предназначенное для диагностирования (контроля) объектов различных типов.

Достоверность технического диагностирования (контроля технического состояния) - степень объективного соответствия результатов диагностирования (контроля) действительному техническому состоянию.

Полнота технического диагностирования (контроля технического состояния) - характеристика, определяющая возможность выявления отказов (неисправностей) в объекте при выбранном методе его диагностирования (контроля).

Глубина поиска места отказа (неисправности) - характеристика, задаваемая указанием составной части объекта, с точностью до которой определяется место отказа (неисправности).

Следует указать, что приведенный перечень терминов и определений, применяемых в технической диагностике, является сокращенным. Поэтому при изучении теоретических основ диагностирования очень важно подробно ознакомиться с содержанием ГОСТ 20911-89.

ЛЕКЦИЯ 1

ОСНОВЫ ТЕОРИИ ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ

1. Общие понятия и определения

Задачи технической диагностики

Техническая диагностика определяет состояние, в котором находится технический объект (устройство, система).

Под состоянием технического объекта понимается совокупность его параметров (значения сигналов, возможность выполнять те или иные функции). Параметры делят на основные (характеризуют выполнение системой заданных функций) и вспомогательные (удобство эксплуатации, внешний вид и проч.).

Различают четыре вида состояний объекта :

    исправное (система соответствует всем, предъявляемым к ней требованиям, т.е. все основные и вспомогательные параметры находятся в пределах заданной нормы );

    неисправное (система не соответствует хотя бы одному из предъявляемых к ней требований);

    работоспособное (все основные параметры системы находятся в пределах заданной нормы );

    неработоспособное (хотя бы один основной параметр системы не соответствует заданной норме).

Определения на языке теории множеств:

Полное множество состояний системы:

где – множество исправных состояний системы;

– множество неисправных, но работоспособных состояний;

– множество неисправных и неработоспособных состояний.

Множества состояний работоспособных и неисправных систем соответственно

,

Системы строятся таким образом, чтобы при всех наиболее вероятных отказах ее элементов был невозможен переход из множества в , а система оказывалась бы в множестве (пример: отказ маршрутного набора в МРЦ, не приводит к потере работоспособности).

Объект, у которого определяется техническое состояние, называется объектом диагноза .

Диагноз есть процесс исследования объекта диагноза. Результат диагноза – это заключение о состоянии объекта диагноза.

Типы задач по определению состояния технических объектов:

    диагноз – определение состояния, в котором находится объект в настоящий момент времени (проверка работоспособности, исправности, поиск неисправностей, испытание ЖАТС);

    прогноз предсказание состояния , в котором окажется объект (эксплуатация ЖАТС, включающая определение периодичности профилактического обслуживания и ремонтов);

    генез – определение состояния, в котором находился технический объект ранее (определение причин отказов);

При решении задач прогноза и генеза всегда приходится решать и задачу диагноза.

Требования к объектам исследования технической диагностики:

    могут находиться, по крайней мере, в двух взаимоисключающих и различимых состояниях (работоспособном и неработоспособном и др.);

    в них можно выделить элементы, каждый из которых подчиняется пункту 1.

Задачи диагноза :

Эквивалентными называются такие неисправности , которые нельзя отличить друг от друга при принятом способе диагноза. Число классов, определяющее степень детализации поиска, называется глубиной поиска (диагноза)

Тесты и системы диагноза

Объект диагноза ОД представляют в виде устройства (см.рис.1), имеющего входы и доступные для наблюдения выходы.

Объекты диагноза делят на:

    непрерывные (аналоговые) (значения сигналов принадлежат непрерывным множествам и время непрерывно);

    дискретные (значения сигналов задаются на конечных множествах, а время дискретно);

    гибридные .

Кроме того, ОД бывают:

    комбинационные (без памяти) (в них выходной сигнал взаимнооднозначно соответствует комбинации входных);

    последовательностные (с памятью) (в них выходной сигнал зависит не только от значений входных, но и от времени).

Процесс диагноза представляет собой последовательность операций (проверок)
, каждая из которых предусматривает подачу на входы объекта некоторого воздействия и определения на выходах (рабочих, либо дополнительных контрольных) реакции на это воздействие.

Любая диагностическая процедура обязательно связывается с определенным, строго фиксированным списком неисправностей, обнаружение которых обеспечивается при ее проведении.

Совокупность проверок, позволяющих решать какую-либо из задач диагноза, называется тестом :
, а число входящих в него проверок – длиной теста .

По назначению тесты бывают:

Полнота обнаружения неисправностей – это доля гарантированно обнаруживаемых неисправностей относительно всех рассматриваемых неисправностей объекта.

По полноте обнаружения неисправностей различают следующие виды тестов:

По длине тесты делят на:

    тривиальные – содержат все возможные для данной системы проверки, предусматривает полное моделирование работы устройства и имеет максимальную длину;

    минимизированные (наиболее распространены);

    минимальные – содержит минимальное число проверок по сравнению с другими тестами для данного устройства, но требует больших вычислений.

В основе процедуры диагноза лежит алгоритм , который представляет собой совокупность последовательности элементарных проверок и правил анализа результатов этих проверок.

Алгоритм диагноза (измерение и анализ ответов, а иногда и формирование тестовых воздействий) реализуется специальными устройствами – средствами диагноза СД . Взаимодействующие между собой объект диагноза и средства диагноза образуют систему диагноза .

Различают два вида систем диагноза:

1.Системы тестового диагноза . В них тестовые воздействия ТВ на ОД поступают только от СД. Данные системы позволяют выбирать состав и последовательность тестовых воздействий исходя из условий эффективной организации процесса диагностирования, в частности в зависимости от ответов объекта на предыдущие воздействия.

2. Системы функционального диагноза не формируют воздействий на ОД. На ОД и СД поступают только рабочие воздействия РВ, предусмотренные рабочим алгоритмом функционирования объекта. Система диагноза работает в процессе рабочего функционирования ОД и решает задачи проверки правильности функционирования и поиска неисправностей.

В конечном итоге процедура диагноза сводится к сравнению работы идеального устройства (задается моделью ОД) и реального исследуемого устройства.

Таким образом, для проведения процедуры диагноза требуется решать следующие основные задачи :

    выбор и построение модели ОД;

    синтез теста;

    построение алгоритма диагноза;

    синтез и реализация средств диагноза.

2. Модели объекта диагноза

Для построения тестов и алгоритмов диагноза необходимо иметь формальное описание объекта и его поведения в исправном и неисправном состояниях – математическую модель диагноза.

Различают модели с явным и неявным описанием неисправностей.

Явная модель объекта диагноза состоит из описаний его исправной и всех неисправных модификаций.

Неявная модель объекта диагноза содержит описание исправного объекта, математические модели его физических неисправностей и правила получения по ним всех неисправных модификаций объекта.

Таблица функций неисправностей (ТФН) является универсальной математической моделью объекта диагноза (пригодна для описания объектов любой природы, как аналоговых, так и дискретных) и принадлежит к классу явных моделей.

Составление таблицы ТФН.

В строках таблицы указывают все возможные проверки , которые могут быть использованы в процедуре диагностирования. Графы таблицы соответствуют исправному и всем возможным неисправным состояниям:
. Каждое неисправное состояние соответствует одной неисправности (одиночной или кратной) из заданного класса неисправностей, относительно которого строится тест. На пересечении -ой графы и -ой строки проставляется результат -ой проверки для системы, находящейся в -м состоянии.

Проверка

Результат проверки для системы, находящейся в состоянии

Задачи технического диагностирования

Техническая диагностика является составной частью технического обслуживания. Основной задачей технического диагностирования является обеспечение безопасности, функциональной надёжности и эффективности работы технического объекта, а также сокращение затрат на его техническое обслуживание и уменьшение потерь от простоев в результате отказов и преждевременных выводов в ремонт.

Функции диагностирования

Диагностирование технических объектов включает в себя следующие функции:

  • оценка технического состояния объекта;
  • обнаружение и определение места локализации неисправностей ;
  • прогнозирование остаточного ресурса объекта;
  • мониторинг технического состояния объекта.

Диагностические параметры

Под диагностическими параметрами понимают репрезентативные параметры, по которым можно судить о состоянии объекта Различают прямые и косвенные диагностические параметры. Первые непосредственно характеризуют состояние объекта, а вторые связаны с прямыми параметрами функциональной зависимостью.

При функциональной диагностике объекта в процессе его работы - наряду с отдельно рассматриваемыми параметрами - могут использоваться также как признак состояния функциональные связи (функциональные зависимости)параметров.

Методы диагностирования

В зависимости от технических средств и диагностических параметров, которые используют при проведении диагностирования, можно составить следующий неполный список методов диагностирования:

  • органолептические методы диагностирования, которые основаны на использовании органов чувств человека (осмотр, ослушивание);
  • вибрационные методы диагностирования, которые основаны на анализе параметров вибраций технических объектов;
  • акустические методы диагностирования, основанные на анализе параметров звуковых волн, генерируемых техническими объектами и их составными частями;
  • тепловые методы; сюда же относятся методы диагностирования, основанные на использовании тепловизоров ;
  • трибодиагностика;
  • диагностика на основе анализа продуктов износа в продуктах сгорания;
  • Метод акустической эмиссии;
  • магнитопорошковый метод;
  • вихретоковый метод;
  • капилярный контроль;
  • методы параметрической диагностики.
  • специфические методы для каждой из областей техники (например, при диагностировании гидропривода широко применяется статопараметрический метод , основанный на анализе задросселированного потока жидкости; в электротехнике применяют методы, основанные на анализе параметров электрических сигналов, в сложных многокомпонентных системах применяют методы диагностирования по стохастическим отклонениям параметров от их осредненных значений и т. д.).

Проблемы технической диагностики

Общей проблемой технической диагностики является достижение адекватной оценки распознавания истинного состояния объекта и классификации этого состояния (нормального или аномального). При проведении технического диагностирования для подтверждения нормального состояния объекта выделяют две основные задачи:
  • обеспечение получения достоверной информации;
  • обеспечение приемлемой оперативности получения информации.
При проведении технического диагностирования для выявления аномалий выделяют две основные проблемы:
  • вероятность пропуска неисправности;
  • вероятность «ложной тревоги», то есть вероятность ложного сигнала о наличии неисправности.

Чем выше вероятность «ложной тревоги», тем меньше вероятность пропуска неисправности, и наоборот. Задача технической диагностики неисправностей состоит в нахождении «золотой середины» между этими двумя проблемами.

См. также

Литература

1. Технические средства диагностирования: Справочник/В. В. Клюев, П. П. Пархоменко, В. Е. Абрамчук и др.; под общ. Ред. В. В. Клюева. - М.: Машиностроение, 1989. - 672 с.

2. Алексеева Т. В., Бабанская В. Д., Башта Т. М. и др. Техническая диагностика гидравлических приводов. М.: Машиностроение. 1989. - 263 с.

3. Костюков А.В., Костюков В.Н. Повышение операционной эффективности предприятий на основе мониторинга в реальном времени. - М.: Машиностроение, 2009. – 192 с.


Wikimedia Foundation . 2010 .

  • Техническая атмосфера
  • Техническая культура

Смотреть что такое "Техническая диагностика" в других словарях:

    Техническая диагностика - научная дисциплина, выявляющая причины возникновения отказов и повреждений, разрабатывающая методы их обнаружения и оценки. Цель диагностики разработка способов и средств оценки технического состояния сооружений. Источник … Словарь-справочник терминов нормативно-технической документации

    техническая диагностика - диагностика Область знаний, охватывающая теорию, методы и средства определения технического состояния объектов. [ГОСТ 20911 89 ] [ПБ 12 529 03 Правила безопасности систем газораспределения и газопотребления, утверждены постановлением… … Справочник технического переводчика

    ТЕХНИЧЕСКАЯ ДИАГНОСТИКА - установление и изучение признаков, характеризующих наличие дефектов в машинах, устройствах, их узлах, элементах и т. д., для предсказания возможных отклонений в режимах их работы (или состояниях), а также разработка методов и средств обнаружения… … Большой Энциклопедический словарь

    Техническая диагностика - отрасль знаний, исследующая техническое состояние объектов (изделий и их составных частей) для установления признаков, обнаружения и поиска отклонений их параметров от допустимых пределов. Техническая диагностика позволяет устранять… … Морской словарь

    Техническая диагностика - см. Диагностика техническая … Российская энциклопедия по охране труда

    Техническая диагностика - установление, изучение и измерение параметров состояния технических систем в штатных и аварийных ситуациях для обеспечения заданных условий их функционирования, а также для предсказания и предотвращения аварий и катастроф. При штатных режимах… … Словарь черезвычайных ситуаций

    Техническая диагностика - научная дисциплина, выявляющая причины возникновения отказов и повреждений, разрабатывающая методы их обнаружения и оценки. Цель диагностики разработка способов и средств оценки технического состояния зданий и сооружений...

Описание презентации Основные термины и определения технической диагностики регламентированы действующими по слайдам

Основные термины и определения технической диагностики регламентированы действующими стандартами, например, российским ГОСТом 20911 -89 «Техническая диагностика. Основные термины и определения» . Ниже приведены наиболее часто употребляемые термины и определения. Техническое состояние – это совокупность свойств объекта, определяющих возможность его функционирования и подверженных изменению в процессе производства, эксплуатации и ремонта. Работоспособный объект – объект, который может выполнять возложенные на него функции. Зарождающийся дефект – потенциально опасное изменение состояния объекта в процессе его эксплуатации, при котором значение информативного параметра (или параметров) не вышло за пределы допусков, задаваемых в технической документации. Дефект – изменение состояния объекта в процессе его изготовления, эксплуатации или ремонта, которое потенциально может привести к уменьшению степени его работоспособности. Неисправность – изменение состояния объекта, приводящее к уменьшению степени его работоспособности.

Отказ – изменение состояния объекта, исключающее возможность продолжения его функционирования. Параметры состояния – количественные характеристики свойств объекта, определяющие его работоспособность, заданные в технической документации на изготовление, эксплуатацию и ремонт. Мониторинг – выполняемые без вмешательства в функционирование объекта процессы измерения, анализа и прогнозирования контролируемых параметров или характеристик объекта с отображением их во времени, сравнением с ретроспективными данными и с пороговыми значениями. Защитный мониторинг – мониторинг, обеспечивающий в случае возникновения аварийной ситуации прекращение функционирование объекта. Прогнозирующий мониторинг – мониторинг с прогнозом изменения контролируемых характеристик объекта на время, определяемое длительностью прогноза. Диагностика (диагностирование) – процесс определения состояния объекта.

Тестовая диагностика – процесс определения состояния объек та по его реакции на внешнее воздействие определенного типа. Функциональная (рабочая) диагностика – процесс определения состояния объекта без нарушения режима его функционирования. Диагностические показатели – значения параметров или характеристик объекта, совокупность которых определяет состояние объекта. Диагностический признак – свойство объекта, качественно отражающее его состояние, в том числе и появление различных видов дефектов. Диагностический сигнал – контролируемая характеристика объекта, используемая для выявления диагностических признаков. (По диагностическому сигналу могут классифицироваться виды мониторинга и диагностики, например, тепловой или вибрационный мониторинг и диагностика). Диагностический параметр – количественная характеристика измеряемого диагностического сигнала, входящая в совокупность показателей состояния объекта. Диагностический симптом – это разность между фактическим и эталонным значениями диагностического параметра.

Технические средства мониторинга – средства, предназначенные для измерения и анализа контролируемых характеристик объекта, а также для прогноза их возможных изменений. Программное обеспечение для мониторинга – программное обеспечение для поддержки баз данных, выполняемых для мониторинга измерений и/или для управления этими измерениями. Технические средства диагностики – средства, предназначенные для измерения диагностических параметров и постановки диагноза. Система мониторинга и диагностики – совокупность объекта, технических средств мониторинга и диагностики, а также (при необходимости) оператора и эксперта, обеспечивающая постановку диагноза и прогноза состояния объекта. Автоматическая диагностика – процесс определения состояния объекта диагностики без участия оператора по данным измерений, выполненных техническими средствами диагностики либо с помощью оператора, либо автоматически. Программы автоматической диагностики – программное обеспечение, позволяющее заменить эксперта персональным компьютером при решении типовых диагностических задач.

Диагностика в пространстве состояний – процесс определения состояния объекта по результатам непосредственного измерения параметров состояния. Диагностика в пространстве признаков – процесс определения остояния объекта по результатам измерения диагностических параметров, определяющих диагностические признаки, в том числе косвенно связанные с параметрами состояния объекта. Диагностическое правило – совокупность диагностических при знаков и параметров, характеризующих появление в объекте определенного вида дефектов или неисправностей и пороговых значений, разделяющих множества бездефектных объектов и объектов с разной величиной дефекта. Диагностическая модель – совокупность диагностических правил по всем потенциально опасным дефектам в объекте диагностики. Алгоритм диагностики – совокупность предписаний по выпол нению определенных действий, необходимых для постановки диагноза в соответствии с конкретной диагностической моделью объекта. Диагноз – заключение о состоянии технического объекта. Прогноз – заключение о степени работоспособности объекта в течение прогнозируемого периода, вероятности его отказа за этот период или об остаточном ресурсе объекта.

Технические средства мониторинга – средства, предназначен ные для измерения и анализа контролируемых характеристик объекта, а также для прогноза их возможных изменений. Программное обеспечение для мониторинга – программное обеспечение для поддержки баз данных, выполняемых для мониторинга измерений и/или для управления этими измерениями. Технические средства диагностики – средства, предназначенные для измерения диагностических параметров и постановки диагноза. Система мониторинга и диагностики – совокупность объекта, технических средств мониторинга и диагностики, а также (при необходимости) оператора и эксперта, обеспечивающая постановку диагноза и прогноза состояния объекта. Автоматическая диагностика – процесс определения состояния объекта диагностики без участия оператора по данным измерений, выполненных техническими средствами диагностики либо с помощью оператора, либо автоматически. Программы автоматической диагностики – программное обес печение, позволяющее заменить эксперта персональным компьютером при решении типовых диагностических задач.

Основные этапы технической диагностики Первым этапом оценки технического состояния любого объекта является определение номенклатуры дефектов, которые представляют наибольшую опасность для его функционирования и должны обнаруживаться в процессе диагностики. Второй этап – это определение совокупности максимально воз можных параметров состояния, диагностических признаков и диагностических параметров, которые могут быть измерены для определения технического состояния объекта. третий этап оценки технического состояния – это оптимизация совокупности измеряемых параметров состояния и диагностических параметров. Эта совокупность должна отражать развитие всех дефектов, определяющих ресурс контролируемого узла или машины в целом.

Функциональная и тестовая диагностика Функциональная диагностика осуществляется без нарушения режимов работы объекта, т. е. при выполнении им своих функций. По способу получения диагностической информации функциональная диагностика подразделяется на вибрационную, тепловую, электрическую и т. п.

Тестовая диагностика – это определение состояния объекта по результатам его реакции на внешнее воздействие. Отличительной особенностью этого вида диагностики является использование источника внешнего воздействия, например, генератора тестовых сигналов

Преимущества разрушающих методов контроля 1) Испытания обычно имитируют одно или несколько рабочих условий. Следовательно, они непосредственно направлены на измерение эксплуатационной надежности. 2) Испытания обычно представляют собой количественные измерения разрушающих нагрузок пли срока службы до разрушения при данном нагружении и условиях. Таким образом, они позволяют получить чистовые данные, полезные для конструирования или для разработки стандартов или спецификаций. 3) Связь между большинством измерений разрушающим контролем и измеряемыми свойствами материалов (особенно под нагрузкой, имитирующей рабочие условия) обычно прямая. Следовательно, исключаются споры по результатам испытания и их значению для эксплуатационной надежности материала или детали.

Недостатки разрушающих метода контроля 1) Испытания не проводят на объектах, фактически применяемых в эксплуатационных условиях. Следовательно, соответствие между испытываемыми объектами, применяемыми в эксплуатации (особенно в иных условиях), должно быть доказано иным способом. 2) Испытания могут проводиться только на части изделий из партии. Они возможно, будут иметь небольшую ценность, когда свойства изменяются oт детали к детали. 3) Часто испытания невозможно проводить на целой детали. Испытания в этом случае ограничиваются образном, вырезанным из детали или специального материала, обладающих свойствами материала детали, который будет применяться в рабочих условиях.

4) Единичное испытание с разрушением может определить только одно или несколько свойств, которые могут влиять на надежность изделия в рабочих условиях. 5) Разрушающие методы контроля затруднительно применять к детали в условиях эксплуатации. 6) Кумулятивные изменения в течение периода времени нельзя измерить па одной отдельной детали. Если несколько деталей из одной и той же партии испытывается последовательно в течение какого то времени, то нужно доказать, что детали были одинаковыми. Если детали применяются в рабочих условиях и удаляются после различных периодов времени, необходимо доказать, что каждая была подвержена воздействию аналогичных рабочих условий, прежде чем могут быть получены обоснованные результаты.

7) Когда детали изготовлены из дорогостоящего материала, стоимость замены вышедших из строя деталей может быть очень высока. При этом невозможно выполнить соответствующее количество и разновидности разрушающих методов испытаний. 8. Многие разрушающие методы испытаний требуют механической иди другой предварительной обработки испытываемого образца. Часто требуются крупногабаритные, дающие очень точные результаты, машины. В итоге стоимость испытании может быть очень высокой, а число образцов для испытаний ограниченным. Кроме того. эти испытания весьма трудоемки и могут прово диться только работниками высокой квалификации. 9. Разрушающие испытания требуют большой затраты человекочасов. Производство легален сюит чрезвычайно дорого, если соответствующие длительные испытания применяются как основной метод контроля качества продукции.

Преимущества неразрушающих методов контроля 1) Испытания проводятся непосредственно на изделиях которые будут применяться в рабочих условиях 2) Испытания можно проводить на любой детали предназначенной для работы в реальных условиях, если это экономически обосновано. Эти испытания можно проводить даже тогда, когда в партии имеется большое различие между деталями. 3) Испытания можно проводить на целой детали или на всех ее опасных участках. Многие опасные с точки зрения эксплуатационной надежности участки детали могут быть исследованы одновременно или последовательно, в зависимости от удобства и целесообразности

4) Могут быть проведены испытания многими НМК каждый из которых чувствителен к различным свойствам или частям материала или детали. Таким образом, имеется возможность измерить столько различных свойств, связанных с рабочими условиями, сколько необходимо. 5) Неразрушающие методы контроля часто можно применять к детали в рабочих условиях, без прекращения работы, кроме обычного ремонта или периодов простоя. Они не нарушают и не изменяют характеристик рабочих деталей. 6) Неразрушающие методы контроля позволяют применить повторный контроль данных деталей в течение любого периода времени.

7) При неразрушающих методах испытании детали, изготовленные из дорогостоящею материала, не выходят из строя при контроле. Возможны повторные испытания вовремя производства или эксплуатации, когда они экономически и практически оправданы. 8) При неразрушающнх методах испытаний требуется небольшая (иди совсем не требуется) предварительная обработка образцов некоторые устройства для испытаний обладают высоким быстродействием, в ряде случаях контроль может быть полностью автоматизированным. . стоимость НМК ниже, чем соответствующая стоимость разрушающих методов контроля. 9) большинство неразрушающих методов испытания кратковременны и требуют меньшей затраты человеко-часов, чем типичные разрушающие методы испытании.

Недостатки неразрушающих методов контроля 1) Испытания обычно включают в себя косвенные измерения свойств, не имеющих непосредственного значения при эксплуатации. Связь между этими измерениями и эксплуатационной надежностью должна быть доказана другими способами. 2) Испытания обычно качественные и редко- количественные. Обычно они не лаки возможности измерения разрушающих нагрузок и срока службы до разрушения лаже косвенно. Они могут, однако, обнаружить дефект или проследить процесс разрушения. 3) Обычно требуется исследования на специальных образцах и исследование рабочих условий для интерпретирования результатов испытания. Там. где соответствующая связь не была доказана. И в случаях, когда возможности методики ограничены, наблюдатели могут не согласиться в оценке результатов испытаний.

Методы НК основаны на использовании различных физических полей, излучений и веществ для получения информации о качестве исследуемых материалов и изделий. Согласно ГОСТ 18353– 79 методы НК классифицируются в соответствии с физическими процессами взаимодействия физического поля или вещества с объектом контроля Виды неразрушающего контроля

Вид контроля Классификация методов НК по характеру взаимодействия физических полей с контролируемым объектом по первичному информативному параметру по способу получения первичной информации Магнитный Kоэрцитивной силы Намагниченности Остаточной индукции Магнитной проницаемости Напряженности Эффекта Баркгаузена Магнитопорошковый Индукционный Феррозондовый Эффект Холла Магнитографический Пондеромоторный Магниторезисторный Электрический Трибоэлектрический Термоэлектрический Электропотенциальный Электроемкостный Электростатический порошковый Электропарамет рический Электроискровой Рекомбинационного излучения Экзоэлектронной эмиссии Шумовой Контактной разности потенциалов

Вихретоко-вый Прошедшего из лучения Отраженного из лучения Амплитудный Фазовый Частотный Спектральный Многочастотный Трансформатор ный Параметрический Радиовол-новый Прошедшего излучения Отраженного излучения Рассеянного излучения Резонансный Амплитудный Фазовый Частотный Временной Поляризацион ный Геометрический Детекторный (диодный) Болометрический Термисторный Интерференцион ный Голографический Жидких кристаллов Термобумаг Термолюмино форов

Вид контроля Классификация методов НК по характеру взаимодействия физических полей с контролируемым объектом по первичному информативному параметру по способу получения первичной информации Фотоуправляемых Полупроводниковых Пластин Калориметрический Тепловой контактный Конвективный Собственного излучения Термометрический Теплометрический Пирометрический Жидких кристаллов Термокрасок Термобумаг Термолюминофоров Термозависимых параметров Оптический интерфереционный Калориметрический

Оптический Прошедшего излучения Отраженного излучения Рассеянного излучения Индуцированного излучения Амплитудный Фазовый Временной Частотный Поляризационный Геометрический Спектральный Интерференционный Нефелометрический Голографический Рефрактометрический Рефлексометрический Визуально оптический Акустический Прошедшего излучения Отраженного излучения (эхо-метод) Резонансный Импедансный Свободных колебаний Акустико-эмиссионный Амплитудный Фазовый Временной Частотный Спектральный Пьезоэлектрический Электромагнитно Акустический Микрофонный Порошковый

Вид контроля Классификация методов НК по характеру взаимодействия физических полей с контролируемым объектом по первичному информативному параметру по способу получения первичной информации Радиационный Прошедшего излучения Рассеянного излучения Активационного анализа Характеристического Излучения Автоэмиссионный Плотности потока энергии Спектральный Сцинтилляционный Ионизационный Вторичных электронов Радиографический Радиоскопический

Классификация методов контроля проникающими веществами (капиллярных и технических) Молекулярный Жидкостный Газовый Яркостный (ахро матический) Цветной (хрома тический) Люминесцентный Люминесцентно-цветной Фильтрующихся частиц Масс-спектрометрический Пузырьковый Манометрический Галогенный Радиоактивный Каторометрический Высокочастотного разряда Химический Остаточных устойчивых деформаций

2. Первичный информативный параметр – конкретный пара метр поля или вещества (амплитуда поля, время его распростране ния, количество вещества и т. д.), изменение которого используют для характеристики контролируемого объекта. 3. Способ получения первичной информации – конкретный тип датчика или вещества, которые используют для измерения и фикса ции выбранного информационного параметра. Каждый из видов контроля подразделяют на методы по следующим трем признакам. 1. Характер взаимодействия поля или вещества с объектом. Взаимодействие должно быть таким, чтобы контролируемый при знак объекта вызывал определенные изменения поля или состояния вещества.

Дефектоскопия – наука о принципах, методах и средствах обна ружения дефектов. Под дефектоскопией понимают также комплекс физических методов и средств выявления дефектов в материале заго товок, полуфабрикатов и деталей (в том числе и деталей в сборе), а также в сварных швах, клепаных и паяных соединениях и др. Дефекты подразделяются на явные и скрытые В зависимости or возможного влияния дефекта на служебные свойства детали дефекты могут быть: -критическими -значительными; -малозначительн ыми

1. Магнитный вид НК основан на анализе взаимодействия магнитного поля с контролируемым объектом. применяется для контроля объектов из ферромагнитных материалов (обнаружение поверхностных и скрытых дефектов).

Информативные параметры: 1) магнитная проницаемость, намагниченность, остаточная намагниченность – используются для характеристики материала ферромагнетика (например, для контроля степени закалки стали, ее прочностных характеристик и других свойств); 2) намагниченность насыщения – используется для определения наличия и количества ферритной составляющей в неферромагнитном материале (величина намагниченности насыщения тем больше, чем больше содержание феррита); 3) сила, которую необходимо приложить, чтобы оторвать пробный магнит от объекта контроля – используется для оценки потока магнитного поля (например, чтобы измерить толщину неферромагнитного покрытия на ферромагнитном основании); 4) напряженность магнитного поля – используется для измерения (другим способом) толщины неферромагнитного покрытия на ферромагнитном основании; 5) градиент напряженности магнитного поля – используется для выявления дефектов несплошности.

Методы Индукционный – информацию о магнитной проницаемости и ее изменении в зависимости от напряженности магнитного поля получают с помощью катушки индуктивности. Применяется преимущественно для обнаружения раковин, непроваров и других скрытых дефектов. Существенным недостатком индукционного метода контроля является его малая чувствительность к поверхностным дефектам типа волосовин, шлаковых включений и т. д. Магнитопорошковый – основан на использовании местного изменения магнитной проницаемости, обусловленного дефектом. Информацию о наличии дефекта в поверхностном и подповерхностном слоях ферромагнитного материала получают с помощью магнитного порошка. Магнитографический – вместо магнитного порошка для регистрации рассеянного магнитного поля применяют магнитную ленту (типа применяемой в магнитофонах, но более широкую). Считывание сигналов о дефектах прибором, датчиком которого служит магнитная головка. Метод позволяет обнаруживать дефекты в более толстом поверхностном слое, но при этом теряется наглядность, присущая магнитопорошковому методу.

Феррозондовый – датчики типа феррозондов используют для обнаружения полей рассеивания на дефектах и измерения магнитных характеристик материалов Развитие магнитного вида НК – по следующим направлениям: 1) изыскание способов отстройки от мешающих факторов; 2) изучение особенностей магнитных полей изделий сложной фор мы, содержащих дефекты; 3) разработка новых высокочувствительных преобразователей; 4) использование потенциальных возможностей эффекта Баркгаузена (эффект Баркгаузена: высокоточное измерение кривой намагничивания В (Н) показало, что она имеет скачкообразный характер в области крутого подъема), а также таких магнитных эффектов, как ядерный, электронный, магнитный резонансы.

2. Электрический вид НК основан на регистрации параметров электрического поля, взаимодействующего с контролируемым объектом (это – электрический метод), или поля, возникающего в контролируемом объекте в результате внешнего воздействия (термоэлектрический и трибоэлектрический методы). Первичные информативные параметры – электрические емкость или потенциал. Методы 1. Емкостной – применяется для контроля диэлектрических или олупроводниковых материалов. По изменению диэлектрической проницаемости, в том числе ее реактивной части (диэлектрическим потерям), контролируют химический состав пластмасс, полупроводников, наличие в них несплошностей, влажность сыпучих материалов и другие свойства.

2. Электрического потенциала – применяется для контроля про водников. Измеряя падение потенциала на некотором участке, контролируют толщину проводящего слоя, наличие несплошностей вблизи поверхности проводника. Электрический ток огибает поверхностный дефект, по увеличению падения потенциала на участке с дефектом определяют глубину несплошности; 3. Термоэлектрический – применяют для контроля химического состава материалов. Например, нагретый до заданной температуры медный электрод прижимают к поверхности изделия и по возникаю щей контактной разности потенциалов определяют марку стали, титана, алюминия или другого материала, из которого сделано изделие. 4. Экзоэлектронной эмиссии - с использованием эмиссии ионов с поверхности изделия под влиянием внутренних напряжений. 5. Электроискровой – по параметрам электрического пробоя из меряются характеристики исследуемой среды. 6. Электростатического порошка – с помощью наэлектризованного порошка определяются дефекты в диэлектриках. Развитие метода – интенсивное изучение мало используемых методов: 1) экзоэлектронной эмиссии; 2) электроискрового; 3) электростатического порошка

3. Вихретоковый вид НК основан на анализе взаимодействия лектромагнитного поля вихретокового преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте. Практически в дефектоскопии используются вихревые токи с частотой до 1 млн Гц. Применяется только для контроля изделий из электропроводящих материалов, в том числе цветных, немагнитных металлов (меди, латуни, алюминия и т. д.) Принцип контроля. Вихревые токи возбуждают в объекте с помощью преобразователя в виде катушки индуктивности, питаемой переменным или импульсным током. Приемным преобразователем (измерителем) служит та же или другая катушка. Интенсивность и распределение вихревых токов в объекте зависят: – от геометрических размеров объекта, – от электрических и магнитных свойств материала объекта, – от наличия в материале несплошностей, – от взаимного расположения преобразователя и объекта.

Методы 1. Отраженного излучения. 2. Прохождения – возбуждающая и приемная катушки располагаются или с одной стороны, или по разные стороны от контролируемого объекта. Развитие метода – по следующим направлениям: 1) изыскание путей контроля изделий сложной конфигурации и многослойных объектов; 2) усовершенствование способов отстройки от мешающих пара метров; 3) разработка многодатчиковых и многочастотных систем для комплексного контроля свойств объекта.

4. Радиоволновой вид НК основан на регистрации изменений пара метров электромагнитных волн радиодиапазона, взаимодействую щих с контролируемым объектом. Обычно применяют волны сверх высокочастотного диапазона (СВЧ) длиной 1– 100 мм. Применяется для контроля изделий из материалов, где радио волны не очень сильно затухают: диэлектрики (пластмассы, керами ка, стекловолокно), магнитодиэлектрики (ферриты), полупроводни ки, тонкостенные металлические объекты. Первичные информативные параметры – амплитуда, фаза, поляризация, частота, геометрия распространения вторичных волн, время их прохождения и др. Методы. По характеру взаимодействия с объектом контроля различают методы: прошедшего, отраженного, рассеянного излучения и резонансный.

5. Тепловой вид НК основан на регистрации изменений тепловых или температурных полей контролируемых объектов. Применяется для объектов из любых материалов. Первичные информативные параметры – температура или тепловой поток. Они измеряются контактными или бесконтактными способами. При бесконтактном способе передача теплоты происходит в основном за счет радиации, т. е. излучения электромагнитных волн в инфракрасной или видимой части спектра в зависимости от температуры объекта. Наиболее эффективное средство бесконтактного наблюдения, регистрации температурных полей и тепловых потоков – сканирующий термовизор.

Методы. По характеру взаимодействия поля с контролируемым объектом различают методы: 1. Пассивный или собственного излучения – на объект не воздействуют внешним источником энергии. Измеряют тепловые потоки или температурные поля работающих объектов. Неисправности про являются в местах повышенного нагрева. Так выявляют места утечки теплоты в зданиях, участки электрических цепей и радиосхем с повышенным нагревом, находят трещины в двигателях и т. д. ; 2. Активный – объект нагревают или охлаждают от внешнего источника контактным или бесконтактным способом, стационарным или импульсным источником теплоты и измеряют температуру или тепловой поток с той же или с другой стороны объекта. Это позволяет обнаруживать несплошности (трещины, пористость, инородные включения) в объектах, изменения в структуре и физикохимических свойствах материалов по изменению теплопроводности, тепло емкости, коэффициенту теплоотдачи. Таким способом выявляют участки с плохой теплопроводностью в многослойных панелях. Не плотное прилегание слоев и дефекты обнаруживают как участки повышенного или пониженного нагрева поверхности панели.

6. Оптический вид НК основан на наблюдении или регистрации параметров оптического излучения, взаимодействующего с контролируемым объектом. Применяется очень широко благодаря большому разнообразию способов получения первичной информации. 1. Наружный контроль. Возможность его применения не зависит от материала объекта. 2. Контроль прозрачных объектов. Обнаружение макро и микро дефектов, структурных неоднородностей, внутренних напряжений (по вращению плоскости поляризации). 3. Использование интерференции позволяет с точностью до 0, 1 длины волны контролировать сферичность, плоскостность, шероховатость, толщину изделий. 4. Дифракцию применяют для контроля диаметров тонких воло кон, толщины лент, форм острых кромок.

Первичные информативные параметры – амплитуда, фаза, степень поляризации, частота или частотный спектр, время прохождения света через объект, геометрия преломления или отражения лучей. Методы 1) По характеру взаимодействия с контролируемым объектом различают методы: прошедшего, отраженного, рассеянного и индуцированного излучения (индуцированное излучение – оптическое излучение объекта под действием внешнего воздействия, например, люминесценция). 2) По способу получения первичной информации различают: – органолептический визуальный контроль, с помощью которого находят видимые дефекты, отклонения от заданных формы, цвета и т. д. ; – визуальнооптический контроль – проводится с применением инструментов: – лупы, микроскопы, эндоскопы – для осмотра внутренних полостей; – проекционные устройства – для контроля формы изделий, спроецированных в увеличенном виде на экран.

7. Радиационный вид НК основан на регистрации и анализе проникающего ионизирующего излучения после взаимодействия его с контролируемым объектом. Объект «просвечивается» рентгеновским или гаммаизлучением, потоками нейтронов, электронов или протонов. Теневое изображение объекта регистрируется на фотопленке (рентгенография, нейтронография и пр.) либо на специальном флюоресцирующем или телевизионном экране (рентгеноскопия) с увеличением изображения в необходимых случаях или с применением других способов улучшения наблюдаемости дефектов. Применение. Наиболее широко используются для контроля рентгеновское и гаммаизлучение (их можно использовать для контроля изделий из самых различных материалов, подбирая соответствующий частотный диапазон) Первичный информативный параметр – плотность потока из лучения: в местах утонений и дефектов плотность прошедшего потока возрастает.

Методы 1. По характеру взаимодействия с контролируемым объектом основным способом радиационного (рентгеновского и гамма) контроля является метод прохождения. Он основан на разном поглощении ионизирующего излучения материалом изделия и дефектом. 2. В зависимости от природы ионизирующего излучения выделяют: рентгеновский, гамма, бета (поток электронов), нейтронный методы контроля. Находят применение потоки позитронов: по степени их поглощения определяют участки объекта, обедненные или обогащенные электронами. 3. По используемому приемнику излучения выделяют: – радиографический метод (приемник излучения – рентгеновская пленка), – радиометрический метод (приемник излучения – сканирующий сцинтилляционный счетчик частиц и фотонов), – радиоскопический метод (приемник излучения – флюоресцирующий экран с последующим преобразованием изображения в телевизионное).

8. Акустический вид НК основан на регистрации параметров упругих волн, возникающих или возбуждаемых в объекте. Применяется ко всем материалам, достаточно хорошо проводя щим акустические волны: металлам, пластмассам, керамике, бето ну и т. д. Первичные информативные параметры – например, количество сигналов в единицу времени, амплитудночастотный спектр сигнала, локация места возникновения упругих волн, время задержки прихода отраженного импульса. Методы 1. По используемой частоте различают: – Ультразвуковые методы – используют упругие волны ультра звукового диапазона (с частотой колебаний выше 20 к. Гц). Эти вол ны возбуждаются и принимаются, как правило, пьезопреобразователями. Учитывая сильное отражение ультразвука от тончайших воздушных зазоров, для передачи волн от пьезопреобразователя к изделию используют жидкостный контакт. – Методы, использующие звуковые частоты. Для возбуждения волн звукового диапазона кроме пьезопреобразователей применяют ударное воздействие, а для приема – микрофоны.

2. По характеру взаимодействия с объектом различают: 1) пассивные методы – регистрируются упругие волны, возни кающие в само ′м объекте: – Шумовибрационный – основан на том, что шумы работающего механизма позволяют судить о его исправности и неисправности и даже о характере неисправности. – Вибрационный – регистрируется вибрация определенных узлов механизма и оценивается работоспособность этих узлов. – Акустической эмиссии – использует упругие волны ультразвукового (реже – звукового) диапазона, появляющиеся в результате перестройки структуры материала, вызываемой: движением групп дислокаций, возникновением и развитием трещин, аллотропическими превращениями в кристаллической решетке.

2) активные методы: – Ультразвуковой – основан на использовании результатов измерения интенсивности пропускаемого контролируемым образцом или отраженного им ультразвукового сигнала. Для контроля используют стоячие волны (вынужденные или свободные колебания объекта контроля или его части) и бегущие волны по схемам прохождения или отражения. Метод используется для обнаружения трещин, раковин и других нарушений сплошности, а также для выявления неоднородностей структуры, плотности и т. д. внутри или на поверхности металлических, пластмассовых и др. деталей. Наилучшие результаты – при обнаружении больших резко очерченных изменений плот ности или структуры в исследуемом образце, например, при обнаружении значительных по размерам трещин или пустот, определении границ раздела материалов, существенно различающихся по плотности.

Методы колебаний – для измерения толщин (при одностороннем доступе) и контроля свойств материалов (модуля упругости, коэффициента затухания). – Импедансный метод – основан на измерении режима колебаний преобразователя, соприкасающегося с объектом. Определяют: твердость материала изделия, податливость его поверхности (податливость улучшается под влиянием дефектов, близких к поверхности изделия). – Эхо метод, или метод отражения. Посланный ультразвуковой импульс отражается от нижней поверхности объекта или от дефекта, и по амплитуде и времени прихода отраженных импульсов судят о дефекте. Метод очень широко применяется для дефектоскопии металлических заготовок и сварных соединений, контроля структуры металлов, измерения толщины труб и сосудов; – Метод прохождения – им дефектоскопируют изделия простой формы (листы), оценивают прочность бетона, дерева и др. материалов, в которых прочность коррелирует со скоростью звука.

Развитие акустического метода – по следующим направлениям: 1) разработка новых способов обработки информации: очень перспективна вычислительная ультразвуковая голография; 2) разработка бесконтактных преобразователей – лазерных возбудителей и приемников, электромагнитноакустических преобразователей, основанных на возбуждении колебаний поверхности объекта внешним электромагнитным полем; 3) отстройка от шумов, главным образом связанных с отражением упругих волн от структурных неоднородностей, например, границ кристаллов в поликристаллическом материале; 4) применение специфических типов упругих волн в твердом теле: поверхностных волн, волн в пластинах и стержнях; 5) разработка средств высокоточного измерения скорости ультразвуковых волн.

9. НК проникающими веществами Неразрушающий контроль проникающими веществами основан на проникновении пробных веществ в полость дефектов контролируемого объекта. Применение: для обнаружения слабо видимых невооруженным глазом поверхностных дефектов (капиллярные методы) и для выявления сквозных дефектов в перегородках (методы течеискания). Методы: 1. Капиллярные – основаны на капиллярном проникновении в полость дефекта индикаторной жидкости (керосина, скипидара), хорошо смачивающей материал изделия; 2. Течеискания – в полость дефекта пробное вещество проникает либо под действием разности давлений, либо под действием капиллярных сил.

Дефекты продукции и их обнаружение В соответствии с ГОСТ 15467 дефектом называется каждое от дельное несоответствие продукции установленным требованиям. Дефекты, встречающиеся в деталях машин, можно подразделить: 1) по возможности обнаружения – – на явные, обнаружение которых возможно предусмотренными правилами, методами и средствами контроля, хотя они могут и не выявляться визуально, и – скрытые, к ним относятся дефекты, выявление которых не пре дусмотрено нормативной документацией; они обычно выявляются при обнаружении явных дефектов или в процессе эксплуатации;

2) по местоположению – – на локальные (трещины, риски, неметаллические включения и т. д.), – расположенные в ограниченных зонах объема или поверхнос ти детали (зоны ликвации, неполной закалки, коррозионного пора жения, местный наклеп и т. д.); их можно подразделить на внутрен ние (глубинные) и наружные (поверхностные и подповерхностные), – распределенные во всем объеме детали или по всей ее поверхно сти (общее несоответствие химического состава, структуры, качества механической обработки и т. д.); 3) по форме, размерам и ориентировке – – на резкие концентраторы напряжений и – нерезкие концентраторы напряжений;

4) по этапу возникновения – – на конструктивные, – производственные (ремонтные), возникающие в процессах из готовления, сборки или ремонта изделия, – эксплуатационные, зарождающиеся и/или развивающиеся в процессе эксплуатации изделия, 106 – аварийные; 5) по возможности устранения – – на устранимые, устранение которых технически возможно и экономически целесообразно, и – неустранимые. Примечание. Отнесение дефекта к той или иной категории определяет ся техническими возможностями и экономической целесообразностью. По мере совершенствования технологических процессов неустранимые дефекты могут стать устранимыми;

6) по возможности использования продукции – – на критические (делают использование продукции практичес ки невозможным или недопустимым), – значительные (оказывают существенное влияние на возмож ность использования изделия по назначению или снижают его дол говечность) и – малозначительные (не оказывают существенного влияния ни на использование изделия по назначению, ни на его долговечность).

Конструктивные дефекты – это несоответствие требованиям технического задания или установленным правилам разработки (модернизации) продукции. Они являются следствием несовершенства конструкции и ошибок при конструировании. Причины таких дефектов могут быть различными: 1) неправильный выбор материалов; 2) неправильное назначение режимов термической обработки; 3) неправильное назначение допусков в сопряжениях; 4) заниженный класс чистоты поверхности деталей; 5) неверное определение размеров деталей (результатом этого могут быть слишком большие действующие напряжения);

6) нерационально выбранная форма детали; 7) малые радиусы галтелей (это может явиться причиной слишком больших коэффициентов концентрации напряжений в опасных сечениях); 8) создание концентраторов напряжений в опасных сечениях (на пример, расположение отверстия для смазки в месте с высоким уровнем напряжений); 9) малая выносливость деталей изделия; 10) низкая жесткость конструкции (повышение вибрации); и т. д. Своевременное выявление конструктивных дефектов позволит непрерывно совершенствовать выпускаемую продукцию, повышать ее надежность и долговечность.

Производственные дефекты и их обнаружение К этим дефектам относится несоответствие требованиям нормативной документации на изготовление или поставку продукции. Они возникают обычно в результате нарушений техпроцесса при производстве или восстановлении деталей, узлов и машин в целом, а так же при неправильно назначенных технологических процессах. Производственные дефекты, если они не были выявлены в процессе изготовления или восстановления изделия, проявляются, как правило, в начальный период эксплуатации. Дефекты этой группы могут возникнуть вследствие применения материала не соответствующей марки, отступления от размеров и допусков на изготовление и ремонт деталей, нарушения технологии механической или термической обработки деталей, нарушения технологических процессов сборки или регулировки изделия или его узлов и блоков и т. д.

Дефекты плавления и литья Литье – это технологический процесс изготовления заготовок и изделий путем заполнения жидким материалом формы или изложницы с последующим его затвердеванием. Изложница – это форма простых геометрических очертаний обычно с небольшой конусностью. Отлитый в изложницу слиток является заготовкой для дальнейшей обработки. Литейная форма имеет конфигурацию, близко или точно (точное литье) повторяющую конфигурацию изделия. Для получения пустотелых отливок в форму вставляют стержни, воспроизводящие конфигурацию внутренних полостей. Формы и изложницы делают разъемными для удобства извлечения слитка или отливки. Через литниковую систему в них заливают жидкий материал и обеспечивают возможность выхода образующихся газов и излишков материала.

Отклонение химического состава (и, как следствие, физических и химических свойств металла отливок) от заданного вызывается неправильным расчетом шихты или нарушением режима ведения плавки металла. Этот дефект является неустранимым. В результате изменяются механические свойства сплава, что может привести к преждевременному разрушению изготовленной из него детали, ее ускоренному изнашиванию и т. п. Дефект обнаруживают с помощью экспрессного химического анализа жидкого или застывшего металла, а также применяя электрические (по изменению термо. ЭДС) и электроиндуктивные методы контроля.

Ликвация – неоднородность химического состава в отдельных зонах слитка или детали. Возникает как изза плохого перемешивания жидкого металла, так и в процессе остывания и кристаллизации материала отливки. В зоне ликвации механические характеристики металла могут быть пониженными. Различают следующие виды ликваций. Дендритная ликвация – неоднородность химического состава по объему зерна (по скелету кристалла, имеющего древовидное, или дендритное, строение). Вызвана тем, что при остывании сначала кристаллизуется аустенит* с малым содержанием углерода, а затем – с большим. Ликвация по удельному весу проявляется в обогащении нижней части слитка или отливки компонентами с большим удельным весом в результате плохого перемешивания жидкого металла. Зональная ликвация проявляется в отличии химического состава металла в дендритах и междендритных промежутках, в обогащении легкоплавкими составляющими центральной части слитка. Ликвацию обнаруживают по разному поглощению рентгеновских и гаммалучей, химическим и металлографическим анализом повер хностей или сечений металла.

Газовые поры представляют собой оставшиеся после затвердевания внутри отливки или в ее поверхностном слое растворенные в жидком металле газы. Они имеют форму округлых пузырьков и гладкую поверхность. Поры объединяются иногда в более крупные газовые пузыри. Появляются в результате плохой газопроницаемости формовочной земли, плохой вентиляции формы и стержней, неудов летворительного качества металла и высокой температуры его заливки. Если поры и газовые пузыри в слитке имеют неокисленную поверхность, то он заваривается в процессе обработки давлением. В высококачественной отливке поры и пузыри недопустимы. Для обнаружения применяют радиационные методы контроля.

Неметаллические включения возникают от недостаточной очистки зеркала расплавленного металла от шлака и флюса перед разливкой, плохого отвода их в процессе разливки. К включениям относят также окислы железа и различных металлов, добавляемых в процессе плавки, частицы огнеупорного и формовочного материала, электродов и т. п. Включения могут быть расположены в самых различных местах отливки. Земляные включения в отливках появляются в результате плохой отделки и очистки форм, небрежной их сборки, неправильного выполнения литниковой системы и заливки форм неспокойной струей металла. Шлаковые включения могут возникать в отливках в случае плохой очистки заливаемого металла и неправильного расположения или отсутствия шлакоуловителей. Специфическим типом включений являются окисные плены в виде тон ких и хрупких прослоек окисленного металла. Они образуются на зеркале и в струе расплавленного металла. Неметаллические включения обнаруживают радиационными и ультразвуковыми методами контроля, а плены – ультразвуковыми. В случае выхода на поверхность их обнаруживают методами поверх ностной дефектоскопии.

Усадочные раковины представляют собой пустоты, образующиеся из-за нарушения правильности усадки металла отливок при не равномерном их охлаждении или недостатка металла в процессе его затвердевания. Механизм образования усадочных раковин в общем случае состоит в следующем. Верхнюю часть изложницы (или сложной литейной формы) утепляют, замедляя теплоотвод. В результате здесь металл застывает последним. При застывании объем металла уменьшается, из него выделяются газы. В результате этих причин вверхней части слитка образуется усадочная раковина. Появлению усадочных раковин способствуют: неправильное расположение при былей и холодильников, излишне высокая температура металла в момент его заливки и неудачная конструкция отливаемых деталей. Характерным для усадочных раковин является их неправильная форма и грубая поверхность. Если литье производилось с целью по лучения деталей, в которых усадочные раковины недопустимы, то отливка бракуется. В слитках обычно усадочная раковина вместе счастью слитка удаляется.



Понравилась статья? Поделитесь ей
Наверх